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Abstract

Flexible structures (such as long-span suspension bridges which undergo moving load, wind

or earthquake excitations) exhibit complex dynamic behavior. Due to high cost of strengthening

such structures, as well as the technological advances in recent years, much attention has been

given to using innovative means of enhancing structural functionality and safety against dynamic

excitations. Among the methods used to mitigate the excessive vibration of structures, the energy

absorber systems are more promising.

This dissertation presents a comprehensive assessment for nonlinear passive vibration

absorbers applied on the beams subjected to traveling loads. It begins with explanation and

formulation of moving loads excitations and continues by the basic concept and features of

nonlinear isolators and inherent nonlinear phenomena. For three types of excitations: transient

moving load, transient moving vehicle and steady state successive moving loads the dynamics of

the system has been studied and for each type of excitation different types of nonlinear passive

dynamic dampers are examined. By optimizing each type of absorber the best optimal parameter

set is defined. Comparisons among the performances of different types of dampers, linear and

nonlinear, are carried out.

Simply supported beams are analyzed using the Euler-Bernoulli theory, the partial differential

equation governing the beam dynamics is reduced to an ordinary differential equation set by

means of the Galerkin-Bubnov method, a multimode expansion of the displacement field allows

to  analyze  the  problem with  good accuracy.  Under  transient  excitation,  the  performance  of  the

dynamic dampers in reducing vibrations is estimated through two indicators: i) the maximum

amplitude of vibration; ii) the portion of energy dissipated by the dynamic damper; the same

indicators are used as objective functions for developing optimization approachs. Under transient

excitation, two conservation laws are found in term of optimal parameters and beam geometry

for cubic nonlinear dynamic dampers.

The study shows that the types of suitable nonlinear dynamic damper for the transient

excitations: traveling load and traveling vehicle are similar. Under transient excitation the most

effective type of dynamic damper in reducing the maximum amplitude of vibration is the one

characterized by a piecewise linear restoring force. Classical linear TMD presents the best

performance in order to dissipate maximum input energy.
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Under successive traveling loads, dynamic dampers characterized by nonlinear restoring

forces does not present pure periodic responses; while depends on nonlinear absorber parameters

quasi periodic response, super harmonics and chaotic responses appear. The behavior of

dynamics system is illustrated by different nonlinear dynamic tools such as Poincare maps and

bifurcation diagrams. Periodic response is desired for successive moving load excitation. Unlike

nonlinear restoring force, with nonlinear damping force the response remain always periodic.

Note that, this result is valid for the types of nonlinearities investigated in this study. Finally, the

dynamic damper possessing linear stiffness and linear-quadratic nonlinear damping, presents the

most effective behavior in order to minimize beam deflections under successive traveling loads.
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1.1. Introduction
Transportation infrastructure is an important factor affecting the development of a national

economy. Because of space and terrain limitations, more transportation structures, such as

highways and railways, have been constructed as bridges in urban areas. With the rapid advances

in the field of high performance materials and construction techniques, these bridges have a trend

towards long and flexible as those of the high-rise buildings. When excessive external loads

occur, these bridges may suffer large deflections and even cause damages that will endanger

human life and property. In order to understand the dynamic behavior of bridges under natural

loads such as wind or earthquake excitations, considerable numerical and experimental efforts

have been made over the past two decades.

In Europe, particularly in the near past, the operating high-speed railway network has suffered

a remarkable expansion, which can be partially explained by the advantages of this large

capacity means of transportation when compared with other means of transportation. Among

these advantages, one can refer the high levels of safety, low energy consumption and near

absence of environmental pollution.

The first high-speed railway line was built in Japan and had called Tokaido Shinkansen. It

was opened in 1964 and trains moved at the running speed of 210 km/h. In the 1960s, after the

Shinkansen construction began, the idea of the TGV was proposed. However, only a few years

later, the French government start the construction of the first French high-speed line, which

called South-East TGV line, and was the first European high-speed railway line. Its construction

elapsed between 1981 and 1983 linking Paris to Lyon in an extension of 410 km; in the case that

it designed for a running speed of 270 km/h. Since then, the development of the European high

speed framework has never stopped, expanding to countries like Belgium, Germany, Italy,

Netherlands, Spain and United Kingdom, Fig. 1-1.
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Fig. 1-1, Evolution of Maximum speed on rails during 1955 till 2006.

From the structural point of view, the design of high-speed railway bridges has to account for

the special requirements of structures subjected to actions different from those that are accounted

for in conventional railways. Thus, the dynamic effects associated to the moving loads from train

traffic are one of the major issues that bridge designers have to considerer.

The speed of circulation of trains in high-speed lines is in the origin of an important

phenomenon that can occur on bridges - the Resonance - which tends to appear for speeds above

200 km/h. Recently two new speed records were reached. The first, 554.3 km/h, was measured in

February of 2007 in TGV East line and the second on the third day of April of the same year,

also in the TGV East line, where the current speed record of 574.8 km/h was reached. These and

other events are an excellent indicator of the “need for speed” and point out the speeds range that

will be commercially practicable in a future not too far away.

In comparison with buildings subjected to wind or earthquake excitations, the location of train

(traveling load) on bridges (beam) is time–variant. Further, because of the interaction effect

between the train and bridge, the magnitude of the train load is dependent upon the response of

the bridge. Therefore, it would be difficult to establish a clear correlation between the governing

parameters and bridge responses if precise train models were used in the analytical studies. To

clearly identify the dominant parameters and to obtain the analytical solutions, simplified models

were usually employed initially, after that the importance of considering inertial effect and

internal stiffness of the load is studied. Once the basic parameters have been identified, it is

possible to refine the model to include other variables for advanced work. In this study, several

assumptions were made to make the problem easier, as follows: (1) The bridge is regarded as a



Vibration Reduction on Beams Subjected to Traveling Loads Using Linear and Nonlinear Dynamic Absorbers
Prepared by: Farhad Sheykh Samani    Supervisor: Prof. Francesco Pellicano

Shahid Bahonar University of Kerman, Iran  ,   University of Modena and Reggio Emilia, Italy

4

straight beam made of homogeneous, elastic, isotropic material. The supports of the bridge are

rigid and the shape of the bridge’s cross-section is unchanged during vibration. The rail

irregularity is negligible. (2) In order to understand the dynamic responses of the cars, the load is

modeled as a periodic series of moving forces or moving suspension masses. In the last chapter,

the infinite sequence of train loads is applied at the centerline of the beam and move along the

longitudinal direction with a constant speed.

The basic assumptions made by all models are as follows.

1. One dimension (axial direction) is considerably larger than the other two.

2. The material is linear elastic (Hookean).

3. The Poisson effect is neglected.

4. The cross-sectional area is symmetric so that the neutral and centroidal axes coincide.

5. Planes perpendicular to the neutral axis remain perpendicular after deformation.

6. The angle of rotation is small so that the small angle assumption can be used.

The analysis of the dynamic response of bridges under moving loads is a problem that has

been investigated by several researchers in the past. The first known study in history about this

subject  was  performed  in  the  early  19th  century,  when  the  collapse  of  the  Chester  rail  bridge

over the river Dee, in England, 1847, led the Queen to establish a commission with the aim of

investigating its causes.

Studies on oscillations of bridges under travelling loads date back to the middle of the

nineteenth century, when the early railways were developed; such applications are the most

important examples of travelling loads. Readers interested to a comprehensive treatment of the

problem of structures excited by moving loads are suggested to read Ref. [1], where several

applications are reported.
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1.2. Bibliographical survey
One of the first modern studies on the subject of moving loads is due to Timoshenko et al [2],

which found an analytical solution and presented an expression for the critical velocity.

Considering moving masses instead of purely moving loads seems more realistic; however, in

Ref. [3] it was shown that the behavior of beams under moving loads and moving masses is

almost the same when the moving mass is assumed small with respect to the beam mass.

In recent years and the development of the high-speed framework in Japan and Europe, the

interest about the dynamic effects induced by trains on bridges has increased. Theoretical,

numerical and experimental studies have been carried on several bridges in order to extend the

knowledge about this subject, identifying the aspects that govern the behavior of bridges under

high-speed trains and developing new approaches to be used by bridge engineers.

Within the larger research field of dynamic behavior of high-speed railway bridges under

moving loads, the issue of vibration control to conform with safety and serviceability limit states

of bridges, especially under resonant conditions, has increased over the last years. This can be

explained by the growing interest in the construction of new high-speed lines and in the

retrofitting of some conventional railway lines for operation under higher speeds, as happens in

some European and Asiatic countries.

Among the earliest remarkable works on this subject, those by Timoshenko [2] should be

stressed. This author studied the case of a moving load or pulsating force passing over a simple

beam, neglecting the inertia of the vehicle. Later, the same author established a solution for the

case of a concentrated force traveling with constant speed along a prismatic bar, disregarding the

contribution of damping forces. An expression for the critical speed was also presented.

A substantial contribute to the awareness of dynamic behavior of structures under moving

loads has been given by Frýba [1], with his comprehensive text “Vibration of Solids and

Structures under Moving Loads”. Detailed results for a large number of cases were here

included, considering from one-dimensional structures to three-dimensional solids. Train

excitations were assumed as moving constant forces, harmonic forces, or continuous loads.

Moving forces arbitrarily varying on time and moving multi-axle system were also considered,

as well as a complete number of special problems, including load motion at variable speed,

random loads and forces moving at high-speed.
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More recently, Fryba [4] investigated a theoretical model of a bridge aiming to study the

resonance vibrations that may occur at critical speeds. Two different reasons for resonance

vibration on railway bridges are described:

i) Repeated action of train axle loads;

ii) High speed of moving loads by itself.

Fryba stresses that resonant behavior due to the high speed of moving loads by itself cannot

appear currently in high-speed lines with today’s trains. Nevertheless, under the repeated action

of train axle loads resonant behavior may occur, leading to unacceptable values of bridge deck

acceleration, which is pointed out as the main cause for ballast destabilization on small and

medium span bridges, as observed on some French bridges [5].

1.3. Background of moving force models

1.3.1. Models of bridge–vehicle system

In practice, the bridge–vehicle system is a very complicated system. The interaction between

the bridge and the vehicle is a complex phenomenon governed by a large number of different

parameters. The use of simplified models is more effective to establish a clear connection

between the governing parameters and the bridge response than a complex model. Normally, the

bridge decks are modeled as beams (Euler-Bernoulli beam or Timoshenko beam) or plates

(isotropic plates or orthotropic plates) and vehicles are modeled as a moving force, a moving

mass or a moving oscillator for simple analysis of vehicle interaction,  Ref. [6].

1.3.2. Models of bridges

There are two kinds of models of bridges in the moving force identification systems. One is

the Beam-Element Model [7] in which a bridge can be modeled as an assembly of lumped masses

interconnected by massless elastic beam elements. The total modal responses, [R]total, on the

bridge equal to the equivalent static responses, [R]static, caused by the external loads less the

responses caused by the inertia forces, [R]inertia, and the damping forces, [R]damping, or

equivalently as: [R]total=[R]static-[R]inertia-[R]damping.

The other model is the Continuous Beam Model [8] ,assuming an Euler-Bernoulli or

Timoshenko beam [9] of constant cross-section with constant mass per unit length, having linear,

viscous proportional damping and with small deflections. From there follow three special cases:
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If the effect of rotatory inertia is neglected and only the effect of shear on the dynamic deflection

of the beam is considered, it is called a shear beam. If the effect of shear is neglected and only

the effect of rotatory inertia is considered, the so-called Rayleigh beam model results. If both the

effect of shear and the effect of rotatory inertia are neglected, the classical Euler-Bernoulli beam

model  is  obtained.  In  most  problems encountered  in  practice  the  effects  of  rotatory  inertia  and

shear can safely be neglected with little error (Euler-Bernoulli beam); however, for short, deep

beams with height-span ratios larger than about 1/10 or beams made of materials sensitive to

shear stresses, it is desirable to give consideration to the effect of shear and rotatory inertia.

Considering the linear Euler-Bernoulli theory for the beam modeling, the equations of motion

of the system are given by,

, ( , ) + , ( , ) + , ( , ) = ( ) , (0, ), > 0 (1-1a)

(0, ) = 0, ( , ) = 0, , (0, ) = 0, , ( , ) = 0 (1-1b)

( , 0) = 0, , ( , 0) = 0 (1-1c)

The beam dynamics is governed by the PDE represented by equation (1-1a) with simply

supported boundary conditions (1-1b) and initial conditions (1-1c); F(x,t) is the external force

which can be time dependent in terms of position along the beam (moving load). y(x,t)  is  the

transverse displacement field of the beam (down is positive), ,  (similar meaning for

the other derivatives), E is the Young’s modulus, I is the moment of inertia of the cross section

area, m= A is the mass per unit length, is the material density, A is the cross section area, C is

the viscous proportional damping.  is the Dirac function and H(t) is the Heaviside function; find

the explanations in appendix A.

Based on modal superposition, the solution of Eq. (1) can be expressed as follows:

( ) = (2 ) ( ), = ( ) ( ) , = 1,2, … (1-2)

Where is the natural frequency of the rth mode.

The eigenfunctions satisfy the following orthonormality conditions,

( ) ( ) = ; ( ) ( ) = , , = 1,2, … (1-3)

Where  is Kronecker’s delta and ( ) ( ) .

It can be assumed that the transverse vibration of the beam is expressed in the form
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( , ) = ( ) ( ) (1-4)

Where ( ) are unknown functions of time (modal coordinates) and ( ) are the

normalized eigenfunctions.

By substituting equation (1-4) into equation (1-1), projecting on the pth eigenfunction and

using the orthonormality conditions, one obtains:

( ) + 2 ( ) + ( ) = ( ) , = 1,2, … (1-5)

1.3.3. Models of vehicles

For the case of low moving speed or low mass ratio, the simple moving force model can be a

good approximation to the complex moving mass problem [1]. For the case of a high mass ratio

and a high moving speed, the moving force model cannot be applied, and the complicated time-

variant system analysis for the moving mass problem must be conducted to ensure an accurate

investigation [10, 11]. If a softly sprung vehicle traverses a flexible structure, the interaction

effects become very important, and the moving oscillator model should be adopted as it is more

realistic in some engineering applications [12]. Usually, a quarter-truck model, a half-single-unit

two-axle truck model, and a half five-axle semi-trailer truck model developed by Todd and

Kulakowski [13] are adopted.



CHAPTER 2

2. Dynamic Vibration Absorbers
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2.1. Principal
The dynamic damper is a classical device for avoiding large amplitude vibrations of a

mechanical system subject to a sinusoidally varying excitation when the forcing frequency

coincides or is near one of the natural frequencies of the system. Obviously, severe vibrations of

a given structure or mechanical system may cause considerable disturbance, which is

inconvenient from a human factors viewpoint, it may conduce to failure due to fatigue, etc.

A tuned mass damper, also known as an active mass damper (AMD) or harmonic absorber, is

a device mounted in structures to prevent discomfort, damage, or outright structural failure

caused by vibration. They are frequently used in power transmission, automobiles, and buildings.

A linear dynamic vibration absorber (DVA) called tuned mass damper (TMD) is a vibration

absorber system composed usually by a secondary mass suspended by a viscous damper and a

spring from a point on the primary structure, tuned to a particular structural frequency of the

bridge in order to, when excited, the damper will resonate out of phase with the bridge motion,

i.e., the TMD mass oscillates in the opposite direction of the primary structure. Therefore,

considering this property, it provides the opportunity to dissipate energy by the damper inertia

force  acting  on  the  structure.  A  TMD  is  one  of  the  simplest  and  most  used  passive  control

devices for several types of structures, including, obviously, bridges. It carries out two major

functions: firstly, it reduces the resonant response of the main structure, and secondly, increases

the overall damping of the structure through the attached dashpot, providing a supplementary

source of energy dissipation.

Usually, the mass and stiffness of the TMD are chosen in order to tune its natural frequency to

values near the resonant frequency of the structure to be damped. The current dashpots used in

TMDs to provide damping are frequently linear or nonlinear viscous dampers.

TMDs stabilize against violent motion caused by harmonic vibration. A tuned damper reduces

the vibration of a system with a comparatively lightweight component so that the worst-case

vibrations are less intense. Roughly speaking practical systems are tuned to either move the main

mode away from a troubling excitation frequency, or to add damping to a resonance that is

difficult or expensive to damp directly. An example of the latter is a crankshaft torsional damper.

Mass dampers are frequently implemented with a frictional or hydraulic component that turns

mechanical kinetic energy into heat, like an automotive shock absorber. Figure 2-1 presents a
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schematic of a simple spring–mass–damper system used to demonstrate the tuned mass damper

system.

Fig. 2-1. A schematic of a simple TMD.

Fig. 2-2. The performance of TMD in order to reduce beam vibration subjected to infinite sequence of the
traveling loads.

Consider a motor with mass m1 attached via motor mounts to the ground. The motor vibrates

as it operates and the soft motor mounts act as a parallel spring and damper, k1 and c1. The force

on the motor mounts is F0; suppose we wish to reduce the maximum force on the motor mounts

as the motor operates over a range of speeds.

Let F1 be the effective force on the motor due to its operation. A small mass, m2, is connected

to m1 by a spring and a damper, k2 and c2. The graph shows the effect of a tuned mass damper on

a simple spring–mass–damper system, excited by vibrations with amplitude of one unit of force

applied to the main mass, m1. An important measure of performance is the ratio of the force on

the motor mounts to the force vibrating the motor, F0 / F1. (It is assumed that the system is linear,

so if the force on the motor were to double, so would the force on the motor mounts.) The blue
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line  represents  the  baseline  system,  with  a  maximum  response  of  9  units  of  force  at  around  9

units of frequency. The red line shows the effect of adding a tuned mass of 10% of the baseline

mass. It has a maximum response of 5.5, at a frequency of 7. As a side effect, it also has a second

normal mode and will vibrate somewhat more than the baseline system at frequencies below

about 6 and above about 10.

The heights of the two peaks can be adjusted by changing the stiffness of the spring in the

tuned mass damper. Changing the damping also changes the height of the peaks, in a complex

fashion. The split between the two peaks can be changed by altering the mass of the damper

(m2). Figure 2-2 shows the performance of TMD in order to reduce beam vibration subjected to

infinite sequence of the traveling loads. The TMD is able to reduce vibration up to 90%.

The first recorded use of a dynamic vibration absorber was described in a paper by Watts [14]

in 1883, followed by Frahm patent [15] in 1909. Ormondroyd and Den Hartog [16] published the

first mathematical treatment of the passive dynamic vibration absorbers.

2.2. Mass dampers in automobiles

2.2.1. Motorsport

The tuned mass damper was introduced as part of the suspension system by Renault, on its

2005 F1 car (the R25), at the 2005 Brazilian Grand Prix. It was deemed to be legal at first, and it

was in use up to the 2006 German Grand Prix. At Hockenheim, the mass damper was deemed

illegal by the FIA (Fédération Internationale de l'Automobile French term for International

Automobile  Federation),  since  the  mass  wasn't  rigidly  attached  to  the  chassis  and,  due  to  the

influence it had on the pitch attitude of the car, which in turn significantly effected the gap under

the car and hence the ground effects of the car, to be a movable aerodynamic device and hence as

a consequence, to be illegally influencing the performance of the aerodynamics. The Stewards of

the meeting deemed it legal, but the FIA appealed against that decision. Two weeks later, the

FIA International Court of Appeal deemed the mass damper illegal [17].

2.2.2. Production cars
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Tuned mass dampers are widely used in production cars, typically on the crankshaft pulley to

control torsional vibration and bending modes of the crankshaft, on the driveline for gear whine,

and other noises. They are also used on the exhaust, on the body and on the suspension. Almost

all cars will have at least one dynamic absorber; in some cases it may have 10 or more.

2.3. Mass dampers in spacecraft
One proposal to reduce vibration on NASA's Ares solid fuel booster is to use 16 tuned mass

dampers as part of a design strategy to reduce peak loads from 6g to 0.25g, the TMDs being

responsible for the reduction from 1g to 0.25g, the rest being done by conventional vibration

isolators between the upper stages and the booster [18].

2.4. Dampers in power transmission lines
High-tension lines often have small barbell-shaped Stockbridge dampers hanging from the

wires to reduce the high-frequency, low-amplitude oscillation termed flutter, see figure 2-3.

Fig. 2-3. Stockbridge dampers on power lines
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2.5. Dampers in buildings and related structures
Typically, the dampers are huge concrete blocks or steel bodies mounted in skyscrapers or

other structures, and moved in opposition to the resonance frequency oscillations of the structure

by means of springs, fluid or pendulums.

Examples of buildings and structures with tuned mass dampers:

Bally’s  to  Bellagio,  Bally’s  to  Caesars  Palace,  and  Treasure  Island  to  The  Venetian

Pedestrian Bridges in Las Vegas.

Berlin Television Tower (Fernsehturm) — tuned mass damper located in the spire.

Bloomberg Tower/731 Lexington in New York.

Burj al-Arab in Dubai — 11 tuned mass dampers.

Citigroup Center in New York City — Designed by William Le Messurier and completed in

1977, it was one of the first skyscrapers to use a tuned mass damper to reduce sway. Uses a

concrete version.

London Millennium Bridge — 'The Wobbly Bridge'.

Taipei 101 skyscraper — Contains one of the world's largest tuned mass damper at 730-tons.

2.6. Damper applications for bridges
Studies on oscillations of bridges under travelling loads date back to the middle of the

nineteenth century, when the early railways were developed; such applications are the most

important examples of travelling loads. Readers interested in a comprehensive treatment of

structures excited by moving loads are advised to read Ref. [1], which reports several

applications.

With the progress in design technology and in construction techniques, as well as the

development of new high-performance materials over the last years, bridges became more

flexible and span lengths increased, leading to lighter and slender structures, which can be

observed more often on recent footbridges, but also in road and railway bridges. Consequently,

these structures started to become more susceptible to the dynamic actions of moving loads.

On the field of vibration control, several systems have been used to reduce the dynamic

responses of structures to desired values. These systems are frequently classified by their type of

structural control in active, passive, semi-active and hybrid systems. Passive systems are those
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that do not need an external power source in order to carry out its control function since its

behavior depends only on the device characteristics. Among the devices classified as passive

systems it can be included viscoelastic dampers and tuned mass dampers, which are well

understood and widely accepted by the engineering community as a means to suppress the

effects of dynamic loads in structures.

The importance of bridge vibrations induced by moving vehicles, which act as oscillators on a

bridge as well as time variant forces, has long been recognized by engineers. Bridge vibrations

can amplify the propagation of existing cracks, resulting in further damage to the bridge. Though

major bridge failures are not usually caused directly by moving vehicles, vehicle-induced

vibrations have become one of the causes of reduction in long-term serviceability of the bridge

and a critical factor to a bridge’s structure fatigue and rapid deterioration [19]. Millennium

Bridge in London/UK, figure 2-5, and Okutama/Tokyo, figure 2-4, Cable-Stayed Bridge are two

examples for application of TMDs on Bridges. A cable-stayed bridge is a bridge that consists of

one or more columns (normally referred to as towers or pylons), with cables supporting the

bridge deck.

One  of  the  majors’  examples  of  excessive  vibrations  occurs  in  the  London  Millennium

footbridge. The London Millennium Footbridge is a pedestrian-only steel suspension bridge

crossing the River Thames. On the first day, this bridge experienced horizontal vibrations

induced by a synchronized horizontal pedestrian load, with central span displacements of about

70 mm. Thus, only two days after the opening, the bridge was closed in order to investigate the

cause of vibrations and to find out mechanics for its reduction. In this way, after an extensive

analysis, it was decided to adopt a passive damping solution by the use of 37 fluid-viscous

dampers and 52 tuned mass dampers to control the bridge behavior.
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Vertical TMD installed below the
bridge

Vertical TMD installed below the
bridgeMillennium Bridge, London

Horizontal TMD during
installation and adjustment

Horizontal TMD during
installation and adjustment

Vertical TMD installation

Fig. 2-4. TMD application on the London Millennium Footbridge.

Fig. 2-5. Okutama Cable-Stayed Bridge: TMD for suppression of Vortex-Induced Vibration

Regarding the major interest area of research related to dynamic behavior of beams under

moving load, the effects on railway bridges induced by high-speed traffic are one of the most
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specific and important areas of recent studies. This can be explained by the growing interest in

the  construction  of  new  high  speed  lines  and  on  the  retrofitting  of  some  conventional  railway

lines for operation under higher speeds, as can be seen in some European countries. Therefore, it

is of the major interest to study not only the vibration problems in high-speed railway bridges but

also different ways of controlling it, with regard to safety and serviceability of bridges,

preventing the increase of maximum bridge displacements, accelerations and internal stresses, as

well as train carriages’ accelerations, especially important to measure the comfort of passengers.

When vibration problems occur, especially in resonant situations, two different solutions can

be studied in order to improve the dynamic behavior of bridges. The first, perhaps those more

conventional, is to increase the stiffness of the structure, while the other is to increase damping.

It is not the aim of the current thesis to study possible solutions related with the increase of

stiffness on a bridge, thus only a reference to this procedure is made.

Figure 2-6 shows the transient response of the beam without attachment, bare beam, as well as

the beam with linear dynamic damper optimized in Ref. [20], V=21.5m/s. This graph illustrate

the performance of a linear TMD for reducing the undesired beam vibration. The vertical green

line  shows  the  time  instant  for  which  the  moving  load  leaves  the  beam  (xF=L); the maximum

deflection occurs at the first peak, which happens before the load leaves the beam.

Fig. 2-6. Transient responses for the bare beam: ‘_ _ _’ and the beam with linear dynamic damper: ‘______’.

2.7. Applicable research project in Iran
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Tale Zang railway bridge is an example of current applicable research for using TMDs on

bridges. Tale Zang railway bridge is located in the 587th km. of Lorestan Railway route, between

Dorood and Andimeshk [21]. In order to improve the train and vehicle velocities with optimal

structural weight the dynamic absorbers is required.

2.8. Complex forms of the vibration absorbers

2.8.1. Multiple tuned mass dampers

One of the main drawbacks of passive DVA is its sensitiveness to tuning frequency ratio,

even when optimally designed [22], leading to a significant performance deterioration if the

dynamic  characteristics  of  the  structure  are  different  from  those  used  to  achieve  its  optimum

design. This limitation could be overcome by the use of multiple tuned mass dampers (MTMDs),

which  allows  the  control  of  more  than  one  mode  of  a  multi  degree  of  freedom (MDOF),  Ref.

[23]; structure by tuning each one of the TMDs to the corresponding interest vibration mode of

the primary structure, or to tune the TMDs to frequencies in the vicinity of a mode of the system,

see figure 2-7 as an example of MTMD. The explicit formulae for the optimum parameters and

the effectiveness of a TMD to control structural oscillations caused by different types of external

excitations is now well established [24-31].

Nevertheless, in spite of their greater effectiveness and robustness with compare to single

TMDs, MTMDs suffer from the lack of real time retuning capabilities, thus they are unable to

adapt to frequency varying excitation.

Fig. 2-7. Layout of the MTMDs on a bridge, Ref. [32].

2.8.2. Fluid viscous dampers
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Other types of passive devices are the fluid viscous dampers (FVDs), Ref. [33], classified as

velocity dependent dissipation devices. FVDs consist in a closer cylinder containing a viscous

fluid, being the energy dissipated by forcing the fluid through orifices around and through the

piston head, causing a damping pressure which creates a force, see figure 2-8.

Fig. 2-8. Application of FVD on high-speed railway bridge.

When comparing FVDs with other passive energy dissipation devices, the former do not

present tuning and detuning problems, which is one of the main drawback of TMDs. In relation

to replacement operations and maintenance costs, some FVDs are equipped with labyrinth seals

that  eliminate  mechanical  friction,  allowing  them  to  be  submitted  to  a  huge  number  of  cycles

without the need of replacement.
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2.8.3. Active, semi-active and hybrid TMDs

On the other hand, active systems are those that need an external power source that allows the

reading of the input transmitted by detectors sending the motion of the structure and through an

actuator affects its behavior and the way the device will act to control those motions. Previously,

it was only referred the existence of passive tuned mass dampers. However, depending on the

adopted control strategy and on the use of a supplementary active controlled device, these tuned

mass devices could also be active, semi-active or hybrid.

Active tuned mass dampers eliminate some of the drawbacks of passive TMDs systems

through the use of an actuator, which is installed between the primary and the auxiliary systems.

Therefore, the force produced by the actuator and acting on the primary structure can enhance

the auxiliary system damping effect if properly controlled. One of the most popular control

strategies is to use the linear quadratic regulator (LQR) method, or, as an alternative, an active

tuned mass damper with linear displacement, velocity and acceleration feedback could also be

considered. On opposition to what happens when a single passive TMD is used, the

aforementioned control strategy can lead to high damping levels in the controlled structure;

moreover, damping can be introduced in several structural vibration modes.

By definition, a semi-active control device is one device that cannot supply mechanical

energy into the controlled structural system, which includes the structure and the control device,

but presents properties that can be controlled to optimally reduce the dynamic responses of the

system, see Ref. [22]. Thus, in semi-active control systems the conventional damper is replaced

by an adjustable damper which, in its turn, needs an external power source, however of limited

power. According to Spencer et al. [22], semi-active control systems appear to be a particularly

interesting and promising system since it offers the reliability of passive devices and the

versatility and adaptability of fully active systems, without the need of large power sources since

they can operate under battery power supply. Variable-orifice fluid dampers, variable-stiffness

devices, smart tuned mass dampers, tuned liquid dampers and controllable fluid dampers are

some examples of semi-active control systems.

Smart tuned mass dampers (STMDs) are a type of semi-active control device that offers

additional advantages when compared with conventional passive TMDs, because of the

possibility of continuously retuning its frequency due to real time control, [22].
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Magneto rheological dampers are another kind of semi-active control device similar to fluid

viscous dampers; however, the fluid inside the damper presents special properties. This fluid,

denominated as magneto rheological, consists on suspensions of micron-sized magnet able

particles in a suitable carrier liquid like synthetic oil, water or silicone oil. When exposed to a

magnetic field, the particles acquire a dipole moment aligned with the external field, which

causes particles to form linear chains parallel to the field, leading to the ability of reversibly

change from free flowing linear viscous liquids to semi-solids having controllable yield strength

in milliseconds.

Finally, there are the so-called hybrid TMDs systems, when assembling active and passive

TMD systems in series. These systems can reduce some of the restrictions and limitations

inherent to each of the active or passive systems when acting alone, in order to obtain higher

performance levels. In addition, when comparing a fully active control system with a hybrid one,

the latter can be more reliable; although it is often more complicated, see Ref. [22].

By attaching an auxiliary mass and an actuator to a TMD, if the response be out of phase with

the response of the tuned mass, the effectiveness of a TMD can be increased. When the structure

is vibrating, this auxiliary mass will produce a force that complements those produced by the

tuned mass, increasing the equivalent damping of the TMD.

2.9. Nonlinear vibration absorbers
Linear vibration isolators are only useful if their natural frequencies are well below the

excitation frequency, [34]. Thus, they are limited to such applications as moderate environmental

disturbances. However, under severe environmental disturbances such as shocks, impact loads,

or random ground motion, their spectrum will definitely contain dangerous low-frequency

components. The isolator under these conditions experiences excessive deflections that can cause

over-stress and even damage to the system. For this reason, it is imperative to consider effective

nonlinear isolators, which can serve several applications, such as:

1. Reducing line spectra in the radiated acoustical signature of marine vessels.

2. Isolating equipment mounted in ships navigating in extreme sea waves.

3. Reducing the magnitude of the high launch loads across all frequency bands acting on

spacecraft.

4. Reducing severe vibrations due to impact loads.
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5. Protecting buildings, bridges, liquid storage tanks, oil pipelines, and nuclear reactor plants

against the damaging effects of earthquakes.

6. Isolating laser interferometers of gravitational wave detectors.

7. Isolating electronic equipment, automotive vehicle front-end-cooling systems, and

passengers from road roughness excitation.

8. Isolating automotive power-train system, engine through proper design of rubber and

hydraulic mounting systems.

9. Protecting operators of hand-held machines.

The influence of isolator nonlinearity on transmissibility depends on whether its stiffness is

hard or soft. It is known that soft nonlinearity causes a reduction in the resonant frequency and

the isolation may be improved. Nonlinearity becomes important in the study of an isolator when

large deflections occur due to the effects of equipment weight and sustained acceleration. These

effects are encountered in the behavior of suspensions of high-speed vehicles and mounts for

sensitive instruments [35].

Many researchers have conducted studies considering various combinations of restoring and

damping forces. Earlier activities include the work of Den Hartog [36] who developed an exact

solution  for  the  vibratory  response  of  a  symmetric  system  with  both  coulomb  and  viscous

damping when subjected to a harmonic forcing function. Ruzicka and Derby [37] presented

extensive results for isolation systems with linear stiffness and nonlinear pth power damping. The

magnitude of stiffness nonlinearity required in the design of nonlinear isolators with reference to

resonant amplitudes and force transmissibility was predicted using the analogue computer and

finite element method. Metwalli [38] proposed a model to optimize nonlinear suspension

systems which were found to outperform their linear counterparts. Nayfeh et al. [39] and Yu et

al. [40] considered a passive nonlinear mechanical vibration isolator consisting of discrete mass,

stiffness, and damping elements. They showed that by suitably designing the stiffness

nonlinearities, localized nonlinear normal modes could be induced in the system. It was found

that when the isolator with localized nonlinear normal modes is subjected to a harmonic

excitation in certain frequency ranges, the resulting resonances become similarly localized and

the level of the transmitted undesirable vibrations is greatly reduced.
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The influence of nonlinearity on the performance of these isolators is manifested in shifting

the  resonance  frequency  and  possibility  of  chaotic  motion.  Other  factors  include  the  type  of

excitation and its frequency spectrum, which are addressed in the next sections.



CHAPTER 3

3. Transient Traveling Load Excitation
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3.1. Introduction
Studies on oscillations of bridges under traveling loads date back to the middle of the

nineteenth century, when the early railways were developed; such applications are the most

important examples of travelling loads. Readers interested to a comprehensive treatment of the

problem of structures excited by moving loads are suggested to read Ref. [1], where several

applications are reported.

One of the first modern studies on the subject of moving loads is due to Timoshenko et al

[41], which found an analytical solution and presented an expression for the critical velocity.

Considering moving masses instead of purely moving loads seems more realistic; however, in

Ref. [3] it was shown that the behavior of beams under moving loads and moving masses is

almost the same when the moving mass is assumed small with respect to the beam mass.

Controlling the vibration of structures can be achieved by means of a suitable structural

design or using active/passive devices, which are particularly interesting when no modifications

can be made to the structure. Passive devices have a primary quality in the extreme reduction of

maintenance,  no  need  of  power  supply;  moreover,  the  service  time is  of  the  same order  of  the

structure life.

A short analysis of the literature strictly related to the present work is now presented. Wu [40]

proposed the application of a linear dynamic absorber to the problem of beams subjected to

moving loads; the damper position was in the middle of the beam span. A finite element method

(FEM) was used to model the beam, and the dynamics was analyzed after reducing the governing

equations  to  the  first  modal  coordinate;  i.e.  the  N-dof  problem  arising  from  the  FEM  was

reduced to a 1-dof model; such a simplified model was used to obtain optimal values for the

stiffness and damping ratio of the absorber, following the Den Hartog’s approach [42]. It should

be  mention  that  in  the  Wu model  the  absorber  equation  was  modified  to  take  into  account  the

spring mass.

Greco and Santini [43] analyzed a beam under moving loads connected with two rotational

viscous dampers attached at its ends; they proved numerically that the damper effectiveness is

strongly dependent on the loading speed. Lee et al. [44] analyzed the dynamics of a 2-dof system

consisting of a grounded linear oscillator coupled to a light mass by means of an essentially

nonlinear spring; they found that the periodic orbits of the undamped system greatly influence



Vibration Reduction on Beams Subjected to Traveling Loads Using Linear and Nonlinear Dynamic Absorbers
Prepared by: Farhad Sheykh Samani    Supervisor: Prof. Francesco Pellicano

Shahid Bahonar University of Kerman, Iran  ,   University of Modena and Reggio Emilia, Italy

26

the damped dynamics; complicated transitions between modes in the damped transient motion

was evidenced.

Kwon et al. [45] proved that when a TGV train (Train a Grande Vitesse, French “high-speed

train”) passes a bridge, the maximum vertical displacement induced by TGV is decreased by

21% and the free vibration dies more quickly using a Tuned Mass Damper (TMD) at the middle

of the bridge. In Ref. [46] a new approach for reducing the resonant vibration of simply

supported beams under moving loads was presented: viscous dampers were used to connect the

main beam, which carries the loads, to an auxiliary beam placed underneath the main one. The

results show that the resonant response of the main beam can be drastically reduced with this

type of device.

The application of passive TMDs to suppress the train-induced vibration on bridges was

studied in [47]; it was shown that, if the maximum dynamic response of the bridge and train are

dominated by the resonant response, within the design train speed, the passive TMD has a good

vibration control performance.

Yau and Yang [48] studied the vibration reduction of cable-stayed bridges subjected to the

passage of high-speed trains. The train was modeled as a series of spring masses, the bridge deck

and towers by nonlinear beam-column elements, and the stay cables by truss elements with

Ernst’s equivalent modulus. The numerical examples demonstrated that the proposed hybrid

TMD system (that consists of several dynamic dampers, each one is tuned to a different

dominant frequency of the main structure) is effective for suppressing the multiple resonant

peaks encountered in the vibration of cable-stayed bridge due to high-speed trains.

In Ref. [49] it was proved that TMDs, tuned to a particular mode, have a negligible effect on

the other modes. The effectiveness of TMDs in reducing the vibration of primary structures

subjected to random loads greatly depends on the nature of the eigenfrequencies distribution.

An elastic beam subjected to a moving vehicle was studied by Lin et al. in Ref. [50]. They

used a linear TMD as an energy-absorbing system and presented results regarding several

absorbers parameters. The road roughness was considered, assuming that the road profile could

be modeled by a stationary random process. Lin [51] studied the vibration reduction of an elastic

continuum carrying a moving mass-spring-damper oscillator using a multi-time scale fuzzy

controller. This method works very well for the maximum deflection reduction.
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Recently, it was shown in Refs.[52-54] that, under certain conditions, essentially non-linear

dynamic dampers can passively absorb energy from a linear non-conservative (damped)

structure, acting as essentially nonlinear energy sink (NES). Georgiades and Vakakis [52]

provided numerical evidence of passive and broadband targeted energy transfer from a linear

flexible beam under shock excitation to a local NES. They have shown numerically that an

appropriately  designed  and  placed  NES  can  passively  absorb  and  locally  dissipate  a  major

portion of the shock energy of the beam, up to an optimal value of 87%. The essential non-

linearity (non-linearizable) of the attachment enables it to resonate with any of the linearized

modes of the substructure, leading to the energy pumping phenomenon, i.e. passive, one-way,

irreversible transfer of energy from the substructure to the attachment [53].

In the present work the dynamics of an Euler-Bernoulli beam subjected to a moving load and

coupled with a linear or essentially nonlinear (cubic) dynamic damper is studied. The goal is to

find the optimal damper parameters (location, stiffness and damping) and to compare the

effectiveness of linear and nonlinear dampers. The optimization was based on two kinds of goal

functions: i) minimizing the absolute maximum deflection; ii) maximizing the amount of energy

transferred from the beam to the damper. Both time and space positions of the maximum beam

deflection are unknown (optimization case i)); therefore, a suitable search must be carried out.

When the portion of the input energy dissipated by the dynamic damper is evaluated

(optimization case ii)), it is crucial to estimate correctly the phenomenon duration.

The governing equations of the beam dynamics (partial differential equations) have been

reduced to a set of ordinary differential equations (ODEs) by means of the Galerkin-Bubnov

approach, which leads to a linear or nonlinear system of ODEs depending on the type of damper

connected to the beam; eigenfunctions of the beam problem without dampers are considered in

the displacement expansion. Both linear and nonlinear models have been tested by comparisons

with the literature and convergence tests have been performed in order to truncate the series

without loss of accuracy.

The evaluation of the objective functions needs an accurate solution of the ODE system

during the transient vibration; in order to use a general approach, the dynamics is studied by

integrating numerically the ODEs using the Gauss Kronrod method (Mathematica [55]); which is

based on an adaptive Gaussian quadrature with error estimation through the evaluation at

Kronrod points.
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Two optimization strategies are used in this chapter: the first one is a brute force approach

(see section 3.2.2) that consists of spanning the parameter space, such approach suffers of a huge

computational cost and give coarse results when the parameter space is large; the second

approach is a random search (see section 3.2.5), which consists of randomly moving all

parameters of interest; it is slightly more efficient than the brute force approach and more

suitable for large parameters space.

3.2. Formulation of the problem
Consider the system represented in Fig. 3-1: a simply supported beam is connected to a small

mass through a linear or nonlinear spring and a linear viscous damper; the beam is loaded with a

point load that can be either moving or time varying. In this dissertation, “bare beam” means the

beam without any attachment, Ref. [40].

Fig. 3-1. The beam model.

Considering the linear Euler-Bernoulli theory for the beam modeling, the equations of motion

of the system are given by,

, ( , ) + , ( , ) + [ ( ) + , ( )] ( ) = ( , ), (0, ), > 0 (3-1a)

A C

f(u)

               DVA

F(x,t)
V(t)=

B
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(0, ) = 0, ( , ) = 0, , (0, ) = 0, , ( , ) = 0 (3-1b)

( , 0) = 0, , ( , 0) = 0 (3-1c)

, ( ) ( ) , ( ) = 0 , (0) = 0, , (0) = 0 , > 0 (3-2a)

( ) = ( , ) ( ), ( ) = (3-2b)

The beam dynamics is governed by the PDE represented by equation (3-1a) with simply

supported boundary conditions (3-1b) and initial conditions (3-1c); the term [ ( ) +

, ( )] ( ) represents the force exerted by the dynamic damper, ( ) is stiffness force,

see equation (3-2b) for definition, , ( ) is viscous damping force and ( ) defines the

location of dynamic damper; F(x,t) is the external force which can be time dependent in terms of

amplitude (transient excitation) or in terms of position along the beam (moving load). Equation

(3-2a) governs the dynamics of the dynamic damper. y(x,t) is the transverse displacement field of

the beam (down is positive), ,  (similar meaning for the other derivatives), E is  the

Young’s modulus, I is the moment of inertia of the cross section area, m= A is the mass per unit

length, is the material density, A is the cross section area, v(t) is the absolute position of the

mass m0, x=d represents the location of the damper on the beam,  is the damping coefficient of

the viscous damper,  is the mass of the dynamic damper.

The attached mass is lightweight compared to the beam mass; indeed, using weighty masses

for the dynamic damper causes a more effective vibration–reduction on the beam; however, the

static deflection of the beam increases as well. Therefore, the mass of the absorber cannot be too

large; in this work, the lumped mass of the absorber is taken to be 5% of total mass of the beam

[40].

The dynamics of the system (3-1) and (3-2) is analyzed after projecting the partial differential

equation (3-1a)  into  a  complete  and  orthonormal  basis;  for  the  present  problem  the

eigenfunctions of the linear operator representing the simply supported beam with no

attachments can be used,

( ) = (2 ) ( ), = ( ) ( ) , = 1,2, … (3-3a)



Vibration Reduction on Beams Subjected to Traveling Loads Using Linear and Nonlinear Dynamic Absorbers
Prepared by: Farhad Sheykh Samani    Supervisor: Prof. Francesco Pellicano

Shahid Bahonar University of Kerman, Iran  ,   University of Modena and Reggio Emilia, Italy

30

Where is the natural frequency of the rth mode.

The eigenfunctions satisfy the following orthonormality conditions,

( ) ( ) = ; ( ) ( ) = , , = 1,2, … (3-3b)

Where  is Kronecker’s delta and ( ) ( ) .

It can be assumed that the transverse vibration of the beam is expressed in the form

( , ) = ( ) ( ) (3-4)

Where ( ) are unknown functions of time (modal coordinates) and ( ) are the

normalized eigenfunctions.

By substituting equation (3-4) into equation (3-1) and (3-2), projecting on the pth

eigenfunction and using the orthonormality conditions, one obtains

( ) + 2 ( ) + ( ) + ( ) + ( ) ( ) ( ) ( )

= ( ), = 1,2, …

(3-5a)

( ) ( ) + ( ) ( ) ( ) = 0 (3-5b)

Where ( )  and

( ) = ( ) ( ) ( ) For linear dynamic damper (3-5c)

( ) = ( ) ( ) ( ) For nonlinear dynamic damper (3-5d)

( ) = ( ) For moving load (3-5e)

( ) = ( ) ( ) For transient constant load (3-5f)
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which are obtained by considering the following forcing in Eq. (3-1a)

( , ) = ( ) For moving load (3-6a)

( , ) = ( ) ( ) For transient constant load (3-6b)

where  is the Dirac function and H(t) is the Heaviside function:

( ) = 0, < 0
1, > 0

(3-7)

A viscous damping term is added to the generic modal equation (3-5a) after projection.

The attachment couples all modes through the infinite summation terms; in the case of linear

dynamic damper one can transform system (3-5) by finding the new vibration mode; conversely,

in the case of nonlinear spring the system cannot be uncoupled.

The transient dynamics is studied by numerically integrating the dynamical system

represented by equations (3-5a,b), after truncating the series (3-4); the truncation is suitably

chosen by checking the convergence of the expansion.

3.3. Validation

3.3.1. Nonlinear dynamic damper and fixed transient load

In order to check the accuracy of the present model, the case of a beam connected with a

nonlinear dynamic damper, loaded with a transient force, having a fixed position on the beam, is

now investigated; comparisons with Ref. [52] are performed.

Consider the system of Fig. 3-1 with = 0, =constant, ( ) ; an impulsive force (a

half sine pulse, see Fig. 3-2) excites the beam

( ) =
2

, 0 < 2

0, < 0 and 2
(3-8)
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Fig. 3-2. Half sine pulse excitation force, Ref. [52].

For such comparisons the following parameters are considered: = 10.0N, =

0.4 s,   = 1.0Pa m = 1.0 kg m , 2 = 0.05s   , = 1.0m, = 0.1kg, =

0.3 = 0.05Ns/m, = 0.65m and = 1.322 × 10 N/m , 5 mode shapes are considered.

Note that in this model the modal damping ratio is not constant for the beam, for example

= 0.00253, = 0.000633, …

The portion of input energy dissipated by the viscous damper of the NES (the dynamic

damper is also called Nonlinear Energy Sink, see Ref. [52]) at time  is computed by the

expression,

= =
[ ( ) ( ) ( )]

[ ( ) ( )]
(3-9)

Where, in the case of moving load Fi= F0 (see equations 3-6a) and xF=Vt and in the case of

impulse load (present section) Fi= F1 (see equations 3-6b and 3-8) and xF=constant.

 is the energy passively absorbed and locally dissipated by the NES,  is assumed large

enough in order to assure that the transient dynamics is nearly damped;  represents the total

portion of the input energy of the beam due to the load and /2 is the impulse duration.

The comparison between the present model and results of Ref. [52] is shown in Figs 3-3 till 3-

10; the series (3-4) is  truncated at  the fifth term, t1 is set equal to 150s. Figs. 3-3 and 3-4 show

(0.8, ) and ), i.e. the response of the beam at x=0.8m and NES deflection. Figs. 3-5 and 3-6

are those overall schematic comparisons. Figs. 3-7 and 3-8 show the portion of energy dissipated

by the viscous damper, , for different positions and different stiffness coefficients of the NES,

respectively. Again, Figs. 3-9 and 3-10 are those overall schematic comparisons.  Black dots are
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reproduced from Ref. [52] and the continuous line represents the present results; a good

agreement among Ref. [52] and the present model is found.

Figure 3-7 shows that, for the present problem (fixed location and impulsive excitation) the

best position of the dynamic damper is not in the middle, due to the broadband excitation and to

the location of the force.

Fig. 3-3. Comparisons: transient response of beam at the location .
 ‘ ’ present results, ‘•’ Ref.[52].

Fig. 3-4. Comparisons: transient response of NES deflection.
 ‘ ’ present results, ‘•’ Ref.[52].
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a:Present Result (5modes, with NES) b:Ref. [52]
Fig. 3-5. Schematic comparison: time history response, mid-span beam deflection.

a:Present Result (5modes, with NES) b:Ref. [52]
Fig. 3-6. Schematic comparison: time history response, NES deflection.

Fig. 3-7. Comparisons: portion of input energy dissipated by the NES ( ) vs. the NES position d. ‘ ’ present
results, ‘•’ Ref. [52].
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Fig. 3-8. Comparisons: transient response of NES stiffness.
 ‘ ’ present results, ‘•’ Ref.[52].

a:Present Result (5modes, 300samples) b:Ref. [52]
Fig. 3-9. Schematic comparison: the portion of input energy absorbed and dissipated by the NES as function

of NES stiffness (C).

a:Present Result (5modes, 300samples) b:Ref. [52]
Fig. 3-10. Schematic comparison: the portion of input energy absorbed and dissipated by the NES as function

of the NES position d.
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3.3.2. Linear dynamic damper and moving load

A further verification of the present model is now carried out in order to check the accuracy of

the approach in the case of moving loads; data from Ref. [40] are used for this purpose.

Consider  the  system  of  Fig.  3-1  with V(t)=constant 0 and ( ) : the external force is

constant in terms of amplitude but moving along the beam, the dynamic absorber is linear. The

external force is given by equation (3-6a).

For this simulation the system parameters are: E=206800MPa, =7820kg/m3,

A=0.03m×0.03m, L=4m, =9.8N, p=0 (p=1, 2, ...) and m0=1.4076kg.

Fig. 3-11. Comparison beam subjected to moving load and connected to linear dynamic damper; ‘ ’ present
results, ‘•’ Ref. [40]; (a) 1-mode expansion, (b) 5-modes expansion

a:Present Result (classical absorber) b:Ref. [40]
Fig. 3-12. Schematic comparison: maximum beam dynamic response vs. load velocity.

Figures 3-11a and b show the maximum deflection of the mid span of the beam vs. the

velocity of the moving load. Figure 3-12 shows the overall schematic comparison considering 5

V[m/s]

y m
ax

(0
.5

,t)
 [m

]

V[m/s]

y m
ax

(0
.5

,t)
 [m

]

0 10 20 30 40 50 60 70

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

V [m/s]V [m/s]

M
A

X
[y

(0
.5

L,
 t)

] [
m

m
]

(a) (b)



Vibration Reduction on Beams Subjected to Traveling Loads Using Linear and Nonlinear Dynamic Absorbers
Prepared by: Farhad Sheykh Samani    Supervisor: Prof. Francesco Pellicano

Shahid Bahonar University of Kerman, Iran  ,   University of Modena and Reggio Emilia, Italy

37

modes. There is a maximum close to V=21.5m/s that is 61% the critical velocity as defined in

Ref. [1] for moving loads without absorbers. The dynamics is mainly governed by the first mode

of the beam, as proved by comparing Figs. 3-11a and b where one and five mode expansions are

used respectively. Moreover, a good agreement with Ref. [40] is found; slight differences for the

high speed range are probably due to the beam modeling: Wu [40] used a finite element method

and reduced numerically the governing equations to the first beam mode; here exact

eigenfunctions are used and the reduction of the PDE to ODEs is made analytically; moreover,

different time integration approaches are used.

3.4. On the convergence of Galerkin method

3.4.1. Galerkin method and nonlinear dynamic problems

The mathematical basis of the Galerkin method for discretization is on the functional analysis.

The spectral theorem proves that the eigenfunctions of an associated symmetric linear operator

are a complete set of the Hilbert space.

Galerkin methods are a class of methods for converting a continuous operator problem (such

as a differential equation) to a discrete problem. In principle, it is the equivalent of applying the

method of variation to a function space, by converting the equation to a weak formulation.

Typically one then applies some constraints on the function space to characterize the space with

a finite set of basis functions.

The mathematical concept of a Hilbert space, generalizes the notion of Euclidean space. It

extends the methods of vector algebra and calculus from the two-dimensional Euclidean plane

and three-dimensional space to spaces with any finite or infinite number of dimensions. A

Hilbert space is an abstract vector space possessing the structure of an inner product that allows

length and angle to be measured. Hilbert spaces are in addition required to be complete, a

property that stipulates the existence of enough limits in the space to allow the techniques of

calculus to be used.

Galerkin method widely has been used for nonlinear dynamic models. Christie and Sanz-

Serna  [56]  investigated  the  performance  of  Galerkin  method  for  the  numerical  solution  of  a

nonlinear model of a string; the increase in tension due to extension is taken into account. They

proved the convergence of the Galerkin method for the present nonlinear model. Research of
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Yoshimura and Hino [57] presents the analysis of dynamic deflections of a beam, including the

effects of geometric nonlinearity, subjected to moving vehicle loads. The dynamic reflections of

the beam and vehicles are computed by using the Galerkin method. Convergence of the Galerkin

method applied to a nonlinear parabolic partial differential equation and nonlinear problems

involving chemical reaction has been proved by Ladyzhenskaja [58] and Finlayson [59],

respectively. References [60-62] present some other usage of Galerkin method for nonlinear

dynamic problems.

3.4.2. Series truncation

In order to evaluate the convergence of the present Galerkin method, appropriate series

truncation is investigated. Fig. 3-13 presents the comparison of transient response of the beam

model connected to nonlinear dynamic damper possessing linear damping and cubic stiffness.

The excitation is transient moving load. Fig. 3-13a presents the response for V=40m/s, and Fig.

3-13b presents the response for V=21.5m/s, the velocity that presents maximum beam deflection.

When V=40m/s the maximum deflection with 1-mode, 3-modes and 15-modes are 1.272mm,

1.269mm and 1.269, respectively. For V=21.5m/s the maximum deflection with 1-mode, 3-

modes and 15-modes are 1.569mm, 1.564mm and 1.563, respectively. Several comparisons

illustrate maximum less than 1% error between the results of 3-modes and 15-modes.

Fig. 3-13. Series truncation comparison; a: V=40m/s, b: V=21.5m/s; ‘ ’ 1 mode shape, ‘.....’ 3 mode shape,
‘ ’ 15 mode shape.
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3.5. Optimization methods
In mathematics and computer science, optimization refers to choosing the best element from

some set of available alternatives.

In the simplest case, this means solving problems in which one seeks to minimize or

maximize a real function by systematically choosing the values of real or integer variables from

within an allowed set. This formulation, using a scalar, real-valued objective function, is

probably the simplest example; the generalization of optimization theory and techniques to other

formulations comprises a large area of applied mathematics. More generally, it means finding

"best available" values of some objective function given a defined domain, including a variety of

different types of objective functions and different types of domains.

Optimization problems are arising in nearly all fields of science and technology. Therefore the

range of problems is huge and a large number of possible approaches for solutions are available.

Following sections are some short survey on optimization methods.

3.5.1. Closed-form mathematical solutions

Closed-form mathematical solutions are only available if the function to be optimized is well-

known in a mathematical sense. Maxima or minima can then be calculated by differentiating the

function and setting the first derivative to zero.

3.5.2. Brute Force Approach

Brute-force search or exhaustive search, also known as generate and test, is a trivial but very

general problem-solving technique that consists of systematically enumerating all possible

candidates for the solution and checking whether each candidate satisfies the problem's

statement.

Brute-force approach in optimization is straightforward and requires considerable

computation power. This method try to calculate all possible solutions and decide afterwards

which one is the best. These methods are feasible only for small problems (in terms of the

dimensionality of the phase space), since the number of possible states of the system increases

exponentially with the number of dimensions. In the case of continuous predictor variables, the

numbers of states are infinite. Despite these drawbacks, brute force method has some benefits:

they are simple to implement, and in the case of discrete systems, all possible states are checked.
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However, its cost is proportional to the number of candidate solutions, which, in many practical

problems, tends to grow very quickly as the size of the problem increases. Therefore, brute-force

search is typically used when the problem size is limited, or when there are problem-specific

heuristics that can be used to reduce the set of candidate solutions to a manageable size.

As a consequence, brute force methods are often seen as reference methods for calculating the

number of states, or the number of calculations necessary to find the optimum with a probability

of  100%.  Hence,  it  can  be  used  for  the  estimation  of  the  effort  to  solve  a  problem.  The

implementation of brute force algorithms is rather simple. In fact, one only has to try out all

possible states of a system. If this is not possible, because the system is described by continuous

variables, one has to try all possibilities according to a certain definition of precision for each

continuous variable.

3.5.2.1. Basic algorithm

In order to apply brute-force search to a specific class of problems, one must implement four

procedures, first, next, valid, and output. These procedures should take as a parameter the data P

for the particular instance of the problem that is to be solved, and should do the following:

   1. First (P): generate a first candidate solution for P.

   2. Next (P, c): generate the next candidate for P after the current one c.

   3. Valid (P, c): check whether candidate c is a solution for P.

   4. Output (P, c): use the solution c of P as appropriate to the application.

The next procedure must also tell when there are no more candidates for the instance P, after

the current one c. A convenient way to do that is to return a "null candidate", some conventional

data value  that is distinct from any real candidate. Likewise the first procedure should return 

if there are no candidates at all for the instance P. The brute-force method is then expressed by

the algorithm.

3.5.3. Gradient Descent

Gradient descent is a first-order optimization algorithm. To find a local minimum of a

function using gradient descent, one takes steps proportional to the negative of the gradient (or of

the  approximate  gradient)  of  the  function  at  the  current  point,  see  Fig.  3-14  for  illustration.  If



Vibration Reduction on Beams Subjected to Traveling Loads Using Linear and Nonlinear Dynamic Absorbers
Prepared by: Farhad Sheykh Samani    Supervisor: Prof. Francesco Pellicano

Shahid Bahonar University of Kerman, Iran  ,   University of Modena and Reggio Emilia, Italy

41

instead one takes steps proportional to the gradient, one approaches a local maximum of that

function; the procedure is then known as gradient ascent.

The idea behind gradient descent, or "hill climbing", methods is to find the maximum or

minimum  of  a  response  surface  by  following  the  gradient,  either  up  or  down.  One  of  the  big

advantages of such a method is that the nearest optimum can be found by only comparatively

few calculations. However, gradient descent methods show several drawbacks. One of the most

important points is that gradient descent methods do not necessarily find the global optimum. As

can be seen from the figure below, whether or not the global optimum is found depends on the

starting point.

Fig. 3-14. Illustration of gradient descent.

Another problem with gradient descent methods is that finding the gradient at a particular

point of a high-dimensional response surface may require a considerable amount of experiments

(in fact one has to test an n-dimensional sphere around the current location, in order to find the

direction  of  the  next  step).  In  terms  of  practical  usage,  it  is  recommended  to  perform  a  set  of

independent hill-climbing approaches with different starting conditions. There are several

methods available which are based on some kind of gradient design. One of the more important

methods is the simplex optimization.

3.5.4. Simplex Algorithm

The simplex algorithm is a gradient search procedure and is quite popular, since it is based on

simple principles and is therefore easy to understand and implement. The journal Computing in
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Science and Engineering listed simplex algorithm as one of the top 10 algorithms of the century.

The idea is as follows: if the parameter to be optimized depends on k variables, then select k+1

points.  These  points  must  not  form  collinear  vectors.  Now,  find  the  points  with  the  worst

response, the best response, and the next-to-worst response. Next, mirror the worst point about

the centroid of the face spanned by the other k points. This procedure is repeated until the best

response is reached. An additional rule has to be introduced in order to prevent the simplex from

oscillating about a ridge: if the mirrored point remains the worst point, then use the next-to-worst

point for reflection across the centroid.

Fig. 3-15. Illustrate a system of linear inequalities defines a polytope as a feasible region. The

simplex algorithm begins at a starting vertex and moves along the edges of the polytope until it

reaches the vertex of the optimum solution.

Fig. 3-15. Illustration of simplex algorithm of linear inequalities.

3.5.5. Monte Carlo Simulations

Monte Carlo methods or random search methods are a class of computational algorithms that

rely on repeated random sampling to compute their results. Monte Carlo methods are often used

in simulating physical and mathematical systems. Because of their reliance on repeated

computation of random or pseudo-random numbers, these methods are most suited to calculation

by a computer and tend to be used when it is unfeasible or impossible to compute an exact result

with a deterministic algorithm, Ref. [63].

The goal of Monte Carlo method is to obtain a frequency distribution of the interesting phase

space which allows the obtaining an overview of the search space. Locations which are of

interest for the optimization (i.e. the maxima and the minima of the response variable) can be
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sampled with higher precision to obtain more accurate information on those particular areas.

Monte Carlo simulation methods are especially useful in studying systems with a large number

of coupled degrees of freedom.

3.5.6. Genetic Algorithms

The genetic algorithm (GA) is a search heuristic that mimics the process of natural evolution.

This heuristic is routinely used to generate useful solutions to optimization and search problems.

GA is  one  particular  approach,  has  been  made  to  combine  the  advantages  of  deterministic  and

random-search methods.

The idea behind these methods is to exploit the principles of genetics for the optimization

theory. First of all, a population of "explorers" is created. These explorers are positioned at

random within the search (phase) space. Each "explorer" detects the value of the response

function at its own location and feeds it to a fitness function. The fitness is designed in a way that

it maximizes when the search goal is reached. Depending on the value of the fitness function,

several basic operations are performed as follow.

Selection:  Select  the  k  "fittest"  explorers  from  the  population.  These  selected  explorers  are

further processed.

Mating: The selected explorers are allowed to mate with other individuals of the population.

The strategy for selecting the mating partners may vary from implementation to implementation.

The offspring of the pairs replace the individuals of the population which perform worst (in

terms of the fitness function).

Crossover: Crossover means the exchange of genetic information between two mating

individuals.  The  idea  is  to  create  a  "child"  which  has  better  properties  (in  terms  of  the  fitness

function)  than  the  two  parents.  If  both  parents  are  located  close  to  an  optimum,  this  strategy

tends to perform a hill-climbing strategy.

Mutation: Mutation means adding some random fluctuations to the location of the explorers in

the phase space. The consequence is that random jumps to other locations become possible with

a certain low probability.

These steps are repeated, until some termination criterion is fulfilled; e.g. the best explorer

reached some defined threshold of fitness, or a defined number of generations have been
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calculated. The second strategy is often applied if no information about the global optimum is

available.

The most important advantage of genetic algorithms is their ability to find an optimum in

huge search spaces. In fact, genetic algorithms are efficient only in systems with very large

search spaces. Among the disadvantages of genetic algorithms is their high demand for

computational power. As a consequence of the high number of necessary evaluations of the

fitness function, each single evaluation has to be cheap in terms of efforts to obtain the response

value.

3.6. Optimization of the dynamic dampers
In the present section linear and nonlinear dynamic dampers acting on the beam defined in the

previous section (Wu model [40]) are analyzed and different optimization approaches are applied

to find the optimal absorber parameters; if other kind of beams will be analyzed, then specific

data will be given. Two indicators are considered for the evaluation of the absorber performance

and for optimization purposes: the maximum vibration amplitude or the factor  (see eq. 3-9). 3

mode shapes considered for truncating Galerkin series.

3.6.1. Optimization of the linear dynamic damper

3.6.1.1. Maximum deflection approach

Consider the system of Fig. 3-1, with p=0.01 (p=1,2,…), V=21.5m/s, and ( ) . Now

the optimization of the dynamic damper is focused on the minimization of the maximum beam

deflection. Stiffness, viscous damping and location of the dynamic absorber can vary to find

optimum.  It  can  be  proven  that  the  optimal  absorber  has  zero  dissipation;  in  order  to  avoid

numerical problems and improve the time integration efficiency, a very small dissipation is

considered: = 0.1 ( this means that, for example, in the case of optimal stiffness, the damping

ratio  of  the  absorber  will  be =0.001). The maximum deflection for the undamped bare beam

(without dynamic absorber and p=0, p=1,2,…) is 1.6279mm and for the damped bare beam is

1.6042mm. In Figures 3-16a and 3-16b the effect of the dynamic damper location and the effect

of the stiffness on the maximum deflection are presented; Figure 3-16a is obtained using

k=1795N/m and Figure 3-16b using d=0.55L (such stiffness and location are the optimal
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absorber parameters), the maximum deflection occurs at xtop=0.53L. It is to note that the optimal

damper location is not sensitive to the variation of the other parameters. The maximum

transverse deflection (which occurs at xtop=0.53L) is 1.5054mm (6.15% reduction with respect to

bare beam), the maximum deflection of the middle of the beam is 1.4989mm.

Fig. 3-16. Optimal location and stiffness of linear dynamic damper for deflection approch: (a) maximum
beam deflection vs. damper location (k=1795N/m), (b) maximum beam deflection vs. stiffness (d=0.55L).

3.6.1.2. Energy approach

The second approach is focused to the maximization of the energy dissipated by the dynamic

absorber, i.e. the indicator  (see Equation (3-9) with Fi=F0 and xF=Vt). Viscous damping and

stiffness have been regularly sampled (a 100 100 grid is considered; it means that the resolution

in terms of damping is 0.4Ns/m and 20N/m for the stiffness, the total number of cases analyzed

is 10000); the damper location is d=0.55L, several numerical tests proved that such parameter

does not change sensibly around the middle of the beam. The portion of input energy absorbed

by the dynamic damper  is represented in Fig. 3-17 when  and k are  varied.  The  maximum

=88.9% is obtained for =10.5Ns/m and k=900N/m; the behavior of  is quite regular, there is

only a maximum located on a flat region, which assures the robustness of the optimum. Fig. 3-18

illustrate the 3D variation of the maximum dissipated energy by linear DVA versus stiffness and

damping coefficients.
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Fig. 3-17. Linear damper optimization: energy approach: map of the energy absorbed .
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Fig. 3-18. Optimum maximum dissipated energy vs. damping and stiffness coefficients.

3.6.2.Optimization of the nonlinear dynamic damper

3.6.2.1. Maximum deflection approach

Consider  the  system  of  Fig.  3-1  with: p=0.01 (p=1,2,…), V=21.5m/s, and ( ) .

Similarly to the previous section Figs. 3-19a and b show the maximum deflection vs. the damper

location and the stiffness respectively; in Fig. 3-19a C=6.7×109N/m3 and in Fig. 3-19b d=0.53L.

The pair (C=6.7×109N/m3, d=0.53L) is the optimal point of the parameter space; the maximum

deflection occurs at xtop=0.53L. For the optimal case in such point the maximum transverse

deflection is 1.4852mm (7.56% reduction with respect to bare beam). Values of linear and

nonlinear stiffnesses are not comparable as they have different units.

Note that the maximum beam deflection with linear and nonlinear absorbers occurs at

xtop=0.53L; but the optimal absorber location for nonlinear case is closer to middle, (d=0.53L),

with respect to the linear case, (d=0.55L). The nonlinear absorber location has almost the same

effect on transverse deflection reduction when it is moved from d=0.51L up to d=0.53L; for the

sake of brevity details are omitted. Figure 3-20 shows the 2D plot of maximum mid-span beam

deflection versus location and stiffness coefficients of the NES. Figure 3-21 presents 3D

illustration of the absolute maximum deflection versus these parameters. These two present

graphs are not symmetry respect to NES location and it depends on the velocity direction.

Fig. 3-19. Optimum location and stiffness of nonlinear absorber for deflection approch, (a)deflection
amplitude vs. damper location (C=6.7×109N/m3), (b) deflection amplitude vs. stiffness (d=0.53L).
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Fig. 3-20. 2D contour plot of maximum mid-span beam deflection vs. NES location and stiffness coefficients.

Fig. 3-21. 3D surface of the absolute maximum beam deflection vs. NES location and stiffness coefficients.

3.6.2.2. Energy approach
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For the Energy approach, d=0.53L is considered, see considerations of the previous section.

The portion of input energy absorbed by the dynamic damper  is represented in Fig. 3-22 when

 and C are varied; Fig. 3-23 is the 3D representation for Fig. 3-22. The maximum =87.4% is

obtained for =11Ns/m and C=0.30×109 N/m3. It is interesting to note that, for the case of fixed

shock load, the optimal nonlinear dynamic damper absorbs 87% of the shock energy of the

beam, see Ref. [52]. The parameters are regularly sampled similarly to the Section 3.4.1.2. The

behavior of  is regular, similarly to the linear case, and a unique maximum is found; however,

the optimal point is close to non small gradients, i.e. it seems less robust with respect to the

linear one.

Figures 3-24(a, b) show the transient response of the system without or with the dynamic

absorber; these figures show the deflection vs. time at the point close to the middle of the beam,

x=0.53L; this point undergoes to the largest oscillation along the beam. Fig. 3-24(a) shows the

time history for the damped beam without attachment and Fig. 3-24(b) shows the deflection of

the same point with the nonlinear dynamic damper, optimized for energy approach ( =11Ns/m

and C=0.30×109 N/m3). The effectiveness of the dynamic damper is evident. The number of

vibrating cycles is strongly reduced by using the damper; this greatly improves the fatigue life.

Table 3-1 summarizes results for: undamped and damped beam, without and with dynamic

damper (linear or nonlinear). For the cases 1 and 2 of Table 3-1 there are not dynamic dampers

and the energy cannot be pumped out from the beam, i.e.  must be zero. For the cases 3 and 4

there is no beam damping and the viscous dynamic damper absorbs all of the energy produced by

the external moving load; therefore, if the time tends to infinite  must be 100%; accordingly,

equal 99.9% or 99.6% is found in the cases 3 and 4 respectively. For the cases 5 and 7 an

extremely low viscous damping is considered, =0.1; it absorbs a small portion of energy, 3.4%

and 2.3%. For the case 6 (linear) and 8 (nonlinear) =88.9% and 87.4% is the maximum

absorbed energy respectively.



Vibration Reduction on Beams Subjected to Traveling Loads Using Linear and Nonlinear Dynamic Absorbers
Prepared by: Farhad Sheykh Samani    Supervisor: Prof. Francesco Pellicano

Shahid Bahonar University of Kerman, Iran  ,   University of Modena and Reggio Emilia, Italy

50

Fig. 3-22. Optimum , for nonlinear dynamic damper and energy approach.

Fig. 3-23.  3D representation of Fig. 3-22.
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Fig. 3-24. Transient response of the system, (a) damped beam without dynamic damper,
(b) damped beam with nonlinear dynamic damper

For the case 3, undamped beam with linear dynamic damper, using optimal values from Ref.

[40], only 1.62% deflection reduction with respect to the bare beam (case 1) is found; while the

case 4 (present optimal parameters) shows 6.26% deflection reduction. Moreover, the case 5,

damped beam and present optimal parameters, shows 6.16% deflection reduction with respect to

the case 2 (damped bare beam). The best deflection reduction is obtained by using the nonlinear

dynamic damper (case 7), 7.42% deflection reduction is found with respect to the case 2.
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Table 3-1. Comparison between various optimization results: moving load excitation

C
ase

Beam and dynamic damper
condition

Stiffness

V
iscous dam

ping
[N

s/m
]

D
ynam

ic dam
per

location
d [m

]

M
axim

um
deflection [m

m
]

Position of
m

axim
um

deflection [m
]

Tim
e of m

axim
um

deflection [s]

1 Undamped beam without
dynamic damper 0 0 ----- 1.6279 2.11 0.1398 0%

2 Damped beam ( = 0.01)
without dynamic damper 0 0 ----- 1.6042 2.11 0.1401 0%

3
Undamped beam with linear

dynamic damper, optimal
values in Ref. [40]

877.8N/m 12.98 2 1.6016 2.11 0.1402 99.9%

4
Undamped beam with linear
dynamic damper, deflection

optimization approach
1795N/m 0.1 2.2 1.5260 2.12 0.1403 99.6%

5
Damped beam with linear

dynamic damper, deflection
optimization approach

1795N/m 0.1 2.2 1.5054 2.12 0.1407 3.4%

6
Damped beam with linear
dynamic damper, energy
optimization approach

900N/m 10.5 2.2 1.5306 2.12 0.1401 88.9%

7
Damped beam with nonlinear
dynamic damper, deflection

optimization approach
6.7×109N/m3 0.1 2.12 1.4852 2.12 0.1402 2.3%

8
Damped beam with nonlinear

dynamic damper, energy
optimization approach

0.3×109N/m3 11 2.12 1.5640 2.12 0.1398 87.4%

3.7. Optimal NES: beam length effect
In order to understand the effect of the beam length on the nonlinear dynamic damper

optimization, the following beam lengths are considered: L=1m, L=4m and L=10m; the other

beam parameters are the same of section 3.3.2, Wu [40] case. The optimal location for the

nonlinear dynamic damper remains close to the middle, d=0.53L; a small viscous damping is

considered ( =0.1) when the optimization is carried out by considering the maximum beam

deflection. The dynamic damper mass remains 5% of the total mass structure; it means that the

damper mass varies accordingly with the beam length. Results have been reported in Table 3-2.

It is known in the literature that , this result is confirmed; moreover, it is

found that for both the maximum deflection and the energy approaches = constant (for
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example, for the max deflection:  = 1.7(10 ) × 1 = 6.7(10 ) × 4  = 1.7(10 ) ×

10  = 1.7(10 )Nm ; for the energy approach: = 80(10 ) × 1  = 0.30(10 ) ×

4  = 80(10 ) × 10  = 80(10 )Nm ); in each case max=87.4% and

( = 44 × 1 = 11 × 4 = 4.4 × 10 = 44Ns). Such conservation laws can be extremely

useful for practical designers; indeed, they define classes of structures having similar behavior. It

means that when we find optimal location and stiffness for a particular length, they can be

straightforwardly extended to other lengths.

Table 3-2. results for optimization of nonlinear dynamic damper with various length
Beam length L [m] 1 4 10
Velocity for which the max deflection occurs [m/s] 86 21.5 8.6
Dynamic damper mass [kg] 0.3519 1.4076 3.519
Optimized stiffness using the deflection approach Copt [N/m3] 1.7(1015) 6.7(109) 1.7(106)
Optimized maximum deflection [mm] 0.0235 1.4852 23.53
Optimized stiffness using the energy approach, Copt [N/m3] 80(1012) 0.30(109) 80(103)
Optimized viscous damping, opt [Ns/m] 44 11 4.4

87.4% 87.4% 87.4%

3.8. Load velocity effect on the DVA performances
Now the behavior of optimal dynamic dampers is considered on a wide range of the moving

load velocity. For the deflection approach, optimal linear and nonlinear stiffness for each case

are used (Table 3-1) and =0.1Ns/m. For the linear dynamic damper d=0.55L and k=1795N/m,

for the nonlinear dynamic damper d=0.53L and C=6.7×109N/m3. The maximum deflection vs.

the travelling load speed is shown in Fig. 3-25. Both linear and nonlinear dynamic dampers

allow to improve the beam behavior over a wide speed range; the nonlinear dynamic damper is

slightly more effective than the linear one, in the vicinity of the maximum amplitude

(V=21.5m/s), see Figure 3-25. For higher speeds, linear and nonlinear dampers behave similarly;

in any case the behavior with dampers is better than the bare beam.
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Fig. 3-25. Maximum deflection vs. the traveling load velocity, effect of dynamic dampers optimized for V=21.5
m/s: ’- - -‘ bare beam, ’-  -  -‘ Linear damper, ’ ‘ Nonlinear damper

Fig. 3-26. Portion of input energy absorbed and dissipated by the dynamic damper versus velocity; (a) L=4m,
(b) L=10m, ’- - -‘ Linear dynamic damper, ’ ‘ Nonlinear dynamic damper

For energy approach the following damper parameters are considered, =10.5Ns/m and

k=900N/m for linear dynamic damper and =11Ns/m and C=0.3 109 N/m3 for the nonlinear one.

The damper location is d=0.55L (linear case), d=0.53L (nonlinear case). The portion of the input

energy dissipated by the damper, , vs. load velocity is shown in Fig. 3-26 for two beam lengths.

It is clear that linear dynamic damper is more effective than the nonlinear one in absorbing
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energy; such behavior seems independent on the beam length. These dynamic dampers are more

effective around the first critical load velocity; it is rational because parameters are optimized at

this velocity.

3.9. Random Optimization
In this section the optimal parameter set is searched by randomly sampling the parameter

space with uniform distribution. The location of the dynamic damper has a small  effect  on the

two present goal functions, maximum deflection and ; therefore, only stiffness and viscous

damping are considered in the optimization process. The total number cases for the random

optimization is 8000, i.e. the same order of the uniform sampling approach.

For the linear dynamic damper the optimization is carried out considering the following

parameter set (k [0, 2000 N/m], [0, 20Ns/m]).

Figures 3-27(a,  b) show the effect of the viscous damping and stiffness on maximum

deflection and Figures 3-27(c,d) show the effect of the same parameters on .

Figures 3-27 is obtained from the two dimensional random search, the surface representing

the results cannot be easily represented because of the random distribution of data; therefore, a

lateral view of such surface is represented. This figure gives a general information about the

damper performances; for example, let us consider Figure 3-27a and =10Ns/m, it shows the

variation of the maximum deflection as the stiffness k is varied. Even though k cannot be

identified from Figure 3-27a only, using Figures 12 a and b one can easily read the optimal

values of and k. In Figs. 3-27(a,b) point A indicates the optimum (k=1682N/m, =0.0749

Ns/m) and the maximum amplitude of oscillation is 1.5055mm (the regular sampling gave

1.5054mm for k=1795N/m and =0.1 Ns/m). Point B shows the maximum deflection of the bare

damped beam, ymax=1.6042mm. In Fig. 3-27(c,d) point C is the optimum for the energy approach

(k=899N/m, =10.51Ns/m) and the energy absorption is 88.9% of input energy (the regular

sampling gave =88.9% for k=900N/m and =10.5Ns/m). By observing Fig. 3-27(c) close to the

origin, it is clear that with =0 dynamic damper cannot absorb energy ( =0).

The random optimization obtains results quite close to the regular sampling. By using this

method the effect of each parameter is clearer in some special situations. For example Fig. 3-

27(a) shows that high values of the stiffness tend to decrease the effect of viscous damping on
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the maximum deflection; Fig. 3-27(b) shows clearly that for k 500N/m the viscous damping has

a small effect on maximum deflection.

Fig. 3-27. Random optimization for linear dynamic damper.

For the case of the nonlinear dynamic damper, the optimization is carried out considering the

following  set  (C [0, 15 109N/m3], [0, 40Ns/m]). Point A of Figs. 3-28(a,b) indicates the

optimum for the deflection approach (C=6.73 109N/m3 and =0.0347Ns/m), the deflection is

ymax=1.4850mm (for the uniform sampling ymax=1.4852mm, C=6.7 109N/m3 and =0.1Ns/m).

Point B of Figs. 3-28(a,b) shows the deflection of the bare damped beam, ymax=1.6042mm. Point
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C of Figs. 3-28(c,d) shows the optimum for the energy approach, the dynamic damper can absorb

up to 87.3% of input energy; the stiffness is C=0.298 109N/m3 and =10.60Ns/m (the uniform

sampling  gives max=87.4% for C=0.3 109N/m3 and =11Ns/m).

Fig. 3-28. Random optimization for nonlinear dynamic damper.
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CHAPTER 4

4. Multifarious Nonlinear Vibration

Absorbers
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4.1. Introduction
Successful manufactured products rely on the best possible design and performance. They are

usually produced using the tools of engineering design optimization in order to meet design

targets.  However,  conventional  design  optimization  may not  always  satisfy  the  desired  targets.

Ruzicka and Derby [36] have studied the effects on vibration isolation of a single degree of

freedom system owing  to  various  types of damping elements:  for example,  viscous, Coulomb,

quadratic, nth power and hysteretic.

Snowdon [65] has studied the performance characteristics of isolators in which non-linear

hardening and softening springs are used in parallel with a linear viscous damper. Snowdon [66]

also proposed a dual phase viscous damper and studied its performance characteristics when  its

base  is excited by rounded step  or  rounded pulse  or  oscillatory step  displacements. Cornelius

[67]  has  studied  the performance characteristics of a dual acting type of isolator. The dual

acting isolator has a  damper whose  characteristics  are  similar  to  those  of  a  linear  viscous

damper  if   the velocity is  below a  certain predetermined value.  However,   if   the  velocity is

above  this predetermined value, the damping force is constant. The performance of different

kinds of Dual phase damping shock mounts has studied by Guntura and Sankar [68]. They stated

that  conclusions  of  that  study  are  of  interest  to  engineers  concerned  with  the  design  of  shock

mounts.

Recently Lee et al. [69] studied the performance of vibro-impact dynamic dampers in systems

of coupled oscillators, consisting of single-degree-of-freedom primary linear oscillators (LOs)

with vibro-impact attachments, acting as vibro-impact nonlinear energy sinks (VI NESs). They

found that, the most efficient mechanism for vibro-impact targeted energy transfers (VI TET) is

through the excitation of highly energetic VI impulsive orbits (IOs), i.e., periodic or quasi

periodic orbits corresponding to zero initial conditions, except for the initial velocities of the

linear oscillators. Deshpande et al. [70] developed a numerical analysis approach to optimize the

performance of a piecewise linear vibration isolation system; they found that the optimal solution

depends on damping coefficients, stiffness ratio, and clearance.

Rüdinger [71] studied the performance of nonlinear viscous damping for tuned mass dampers.

The tuned mass damper was assumed to be attached to a single-degree-of-freedom system

excited by white noise. They found that, the structural damping has very little influence on the
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optimal parameters for a linear tuned mass damper; moreover, they revealed that the optimal

linear and nonlinear tuned mass dampers have practically the same effect in terms of reducing

the structural displacement.

The goal of the present chapter is to analyze the performances of different passive nonlinear

dynamic dampers in reducing the deflection of an Euler Bernoulli beam under moving loads;

local non-linear attachments having monomial, polynomial or piecewise linear stiffness are

considered. From applicable point of view, the use of piecewise linear dynamic absorbers is less

expensive with respect to other kinds of nonlinear dampers; therefore, they are more likely

suitable for actual applications.

4.2. Dynamical model
Consider the system represented in Fig. 4-1: (almost similar to Fig. 3-1) a simply supported

beam is connected to a small mass through a essential nonlinear spring and a linear viscous

damper; the beam is loaded with a point moving load.

Fig. 4-1. The beam model.

Considering the linear Euler-Bernoulli theory for the beam modeling, the equations of motion

of the system are given by,

A C

f(u)

               DVA

F0      V

B
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, ( , ) + , ( , ) + [ ( ) + , ( )] ( ) = ( ) (4-1a)

(0, ) = 0, ( , ) = 0, , (0, ) = 0, , ( , ) = 0 (4-1b)

( , 0) = 0, , ( , 0) = 0 (4-1c)

, ( ) ( ) , ( ) = 0 , (0) = 0, , (0) = 0 , > 0 (4-2a)

( ) = ( , ) ( ) (4-2b)

( ) = , i=1,3,5,7,9 For monomial stiffness (4-3a)

( ) = + + + For polynomial stiffness (4-3b)

( ) =
( + ) <

0
( + ) >

For piecewise linear stiffness (4-3c)

The beam dynamics is governed by the PDE represented by equation (4-1a) with simply

supported boundary conditions (3-1b) and initial conditions (3-1c); ( ) is stiffness force,

equation (4-3) is the definition of stiffness force for multifarious nonlinear stiffness DVAs;  is

the piecewise linear stiffness tolerance. For details see the chapter 3-2.

Using Galerkin method and projecting on the pth eigenfunction and taking advantage of the

orthonormality conditions, one obtains

( ) + 2 ( ) + ( ) + ( ) + ( ) ( ) ( ) ( )

= ( ) , = 1,2, …

(4-4a)

( ) ( ) + ( ) ( ) ( ) = 0 (4-4b)
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Where ( )  and a viscous damping term is added to the generic modal equation

(4-4a) after projection. D(t) represent the restoring force acting on the beam due to the damper

spring:

( ) = ( ) ( ) ( ) , = 1,3,5,7,9 (4-5a)

( ) = ( ) ( ) ( ) + ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

(4-5b)

( ) = × ( ) ( ) ( ) × ( ) ( ) ( )

× ( ) ( ) ( ) ( ) ( ) ( )

(4-5c)

Eq. (4-5a) presents the restoring force for the five different kinds of the monomial function;

Eq. (4-5b) presents polynomial stiffness function and Eq. (4-5c) is the restoring force when

damper stiffness has piecewise linear behavior.

The nonlinear attachment couples all modes through the series (4-5); in the case of linear

dynamic damper, one can transform the system (4-4), after finding the new vibration modes, into

a system of uncoupled linear equations; conversely, in the case of nonlinear spring the system

cannot be uncoupled.

The transient dynamics is studied by numerically integrating the dynamical system

represented by equations (4-4a,b), after truncating the series (3-4), see section 3-2 for details; the

truncation is suitably chosen by checking the convergence of the expansion.

4.3. Optimization of the dynamic damper
The dynamic damper installed nearby the middle, d=0.55L for linear and piecewise linear

dynamic damper and, d=0.53L for other kinds of nonlinearities, see Ref. [72]. The maximum

deflection occurs at different velocities for the case of the moving load and moving vehicle; in

each case, the optimization is carried out for the corresponding critical velocities.3 mode shapes
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considered for truncating Galerkin series. Numerical values are the same as section 3-3-2; the

damped beam is considered: p=0.01(p=1,2,...).
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4.3.1. Monomial stiffness

Consider a local attachment having a monomial stiffness, f(u)= ciui, i=1, 3, 5, 7, 9, see Eq. (4-

3a).  The  linear  (f(u)=c1u)  and  cubic  (f(u)=c3u3) stiffnesses have been studied in the Ref. [72];

here we use such cases for comparisons.

For each type of monomial, the nonlinear dynamic dampers are optimized, Figures 4-2(a)-(d)

show the maximum beam deflection with attachments, having monomial stiffness, versus the

coefficient ci,; the optimal coefficients are readily obtained, it is to note that a unique minimum

is  present;  results  are  summarized  in  the  Table  4-1.  In  the  Ref.  [72],  it  was  found  that,  cubic

stiffness shows better performances with respect to the linear one; the results reported in Table 4-

1 show that, using higher power for the nonlinear stiffness leads to a more effective reduction of

the beam deflection; for example using a linear dynamic damper we can reduce the beam

deflection of 6.159% and using a cubic one, it is possible to reduce the beam deflection of

7.418%; while if the stiffness force is f(u)=c9u9 (c9=88×1027 N/m9) the optimal dynamic damper

is able to reduce the beam deflection of 8.147%.
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Fig. 4-2. The optimal monomial stiffness, (a): f(u)= c3u3, (b): f(u)= c5u5, (c): f(u)= c7u7, (d): f(u)= c9u9.
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4.3.2. Polynomial stiffness

Consider a dynamic damper having a linear viscous damper and a polynomial stiffness,

f(u)=c1u+c3u3+c5u5+c7u7.

The optimization is carried out considering a four parameter space: c1,  c3,  c5 and c7. Such

parameters are randomly sampled and the minimum deflection is found. The total number of

random samples (sets of parameters) is 1720000.

After carrying out the random search one obtains a set of values of the objective function

(maximum beam deflection) versus four parameters ci;  this  set  is  projected  on  sections  of  the

parameter space to allow a visualization, see Figures 4-3(a)-(d).

The optimal set is found by means of a suitable code developed for the Mathematica software;

however, Figures 4-3(a)-(d) allow a quick finding of the minimum and the corresponding

parameters set; such set is presented in Table 4-1, case 6; it gives the maximum beam deflection

equal to 1.4757mm (8.01% reduction respect to bare beam). Similarly to the previous cases we

used a small dissipation, =0.1Ns/m.

It turns out that, the most important part of this compound dynamic damper is the seventh

power,  (c7=46.6(1021)N/m7);  i.e.,  the  effects  of  linear  (c1=15.7N/m), cubic (c3=0.49(109)N/m3)

and fifth power terms (c5=0.56(1015)N/m5) are negligible with respect to the seventh power term;

this can be proven by comparing case 6 of Table 4-1 with cases 2-5.

Figures 4-3(a)-(d) display the same minimum, on the abscissa of each figure one can read the

corresponding parameter. The optimal values for c1 (Fig. 4-3(a)), c3 (Fig. 4-3(b)) and c5 (Fig. 4-

3(c)) are small and c7 (Fig. 4-3(d)) is the most significant parameter. By comparing case 6 of

Table 4-1 with cases 5, 7, it turns out that a high power monomial stiffness performs better than a

polynomial one.
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Figure 4-3, the maximum beam deflection versus different coefficients of polynomial stiffness function:
random optimization results; a: maximum deflection vs. c1, b: maximum deflection vs. c3, c: maximum

deflection vs. c5, d: maximum deflection vs. c7.

4.3.3. Piecewise linear stiffness

Now piecewise linear dynamic dampers are considered. Figure 4-4 shows a schematic graph

for the present kind of restoring force versus a generic elongation u. When the elongation |u| is

smaller than the gap , the restoring force is zero (2  is the dead zone). For |u|>  the restoring

force varies linearly with u; the slope is given by k.

The optimization is carried out considering two parameters:  and k; such parameters are

regularly sampled. Figs. 4-5 and 4-6 depicts the maximum beam deflection versus and k,
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finding the optimal parameters is trivial, the optimal pair is k=37000N/m and =0.58mm,

corresponding to a maximum beam deflection equal to 1.4735mm (8.147% reduction respect to

the bare beam). Table 4-1 shows that the piecewise linear dynamic damper is the most effective

for reducing the beam deflection (Case 8).

Figure 4-4, the schematic stiffness force versus stiffness deflection for piecewise linear dynamic damper.

Fig 4-5. Maximum deflection vs. gap  and stiffness k of the piecewise linear stiffness; the optimum is
k=37000N/m and =0.58mm (1.4735mm max deflection).
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Fig. 4-6. Maximum deflection vs. gap  and stiffness k of the piecewise linear stiffness: 3D presentation.
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Table 4-1. Comparison of different kinds of dynamic dampers to obtain minimum beam deflection,
=0.1Ns/m.

Case Beam and dynamic damper
condition Stiffness Maximum

deflection [mm]
Reduction
Percentage

1 Bare beam 0 1.6042 ----

2 Linear dynamic damper c1=1.79(103)
N/m 1.5054 6.159%

3 Monomial cubic dynamic
damper c3=6.7(109) N/m3 1.4852 7.418%

4 Monomial fifth power stiffness c5=19.6(1015)
N/m5 1.4786 7.829%

5 Monomial seventh power
stiffness c7=49(1021) N/m7 1.4750 8.054%

6 Polynomial seventh power
stiffness

c1=0.0158(103)
N/m

c3=0.492(109)
N/m3

c5=0.564(1015)
N/m5

c7=46.58(1021)
N/m7

1.4757 8.010%

7 Monomial ninth power stiffness c9=88(1027) N/m9 1.4737 8.135%

8 Piecewise linear dynamic damper k=37000 N/m
=0.58mm 1.4735 8.147%



CHAPTER 5

5. Transient Moving Vehicle Excitation
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5.1. Introduction
In the previous two chapter we studied the performance of linear and different kinds of

nonlinear passive dynamic dampers for the beam subjected to transient traveling load. In this

chapter the performance of such vibration absorbers is studied for the case of the Euler-Bernoulli

beam under excitation of the moving vehicle.

In the past few decades, the problem of bridge vibration under moving forces or vehicle loads

has been studied extensively. The dynamic performance of bridges can be affected by many

factors. Different types of vehicles, vehicle speeds, and road surface conditions could all

contribute to different bridge dynamic performances [73]. In the literature many vehicle–bridge

interaction models have been proposed for the purpose of identifying vehicle parameters.

Bridges are usually modeled as simply support beams [74], [75] and [76] or multi-span

continuous beams [77] and [78]. For the vehicle model, most researchers used a single-degree-

of-freedom (SDOF) system or two-DOF system [79], [80] and [81], while others used a more

complex twelve-parameter vehicle model [82]. In the present study, the moving vehicle is

modeled as a single DOF mass with linear stiffness and viscous linear damping. One may

improve the model and consider more complicated models, while as results show the

performance of the different kinds of linear and nonlinear DVAs is almost similar for the case of

the moving vehicle and moving load; i.e. when one type of nonlinearity improve the performance

of the DVA this type is also effective for the case of the moving vehicle. So we guess that for the

different kinds of traveling excitation the effective NESs are similar.

In this chapter the performances of linear, cubic and piecewise linear stiffness for the DVA is

considered in order to reduce the deflection of an Euler Bernoulli beam under moving loads or

vehicles. From applicable point of view, the use of piecewise linear dynamic absorbers is less

expensive with respect to other kinds of nonlinear dampers; therefore, they are more likely

suitable for actual applications. The monomial and polynomial nonlinearities did not study for

the case of the traveling vehicle, since it demonstrated that piecewise linear stiffness is the most

effective nonlinearity when beam is subjected to the traveling excitation.
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5.2. Dynamical systems and basic equations

Consider the system of figure 5-1, the simply supported beam is loaded by a moving vehicle

(one DOF model) and a dynamic damper is attached to the middle of the beam. The equations of

motion for such system are given by

, ( , ) + , ( , ) + [ ( ) + , ( )] ( )

+[ ( ) + , ( )] ( ) = 0, (0, ), > 0
(5-1a)

(0, ) = 0, ( , ) = 0, , (0, ) = 0, , ( , ) = 0 (5-1b)

( , 0) = 0, , ( , 0) = 0 (5-1c)

, ( ) ( ) , ( ) = 0 , (0) = 0, , (0) = 0 , > 0 (5-2a)

( ) = ( , ) ( ) (5-2b)

( , ( ) ) ( ) , ( ) = 0 , (0) = 0, , (0) = 0 , 0 < < (5-3a)

( ) = ( , ) ( ) (5-3b)

Where mv, kv and cv are mass, stiffness and viscous damping of the vehicle, respectively; z(t)

is the vertical position (down is positive). f(u) is the restoring force of the damper spring; in the

present section we consider mainly piecewise linear springs. Note that, due to the nonlinearity of

the dynamic damper, this set of partial differential equations cannot be decoupled. After

projection of eq. (5-1), similarly to eq. (4-1), one obtains a set of ordinary differential equations:

( ) + 2 ( ) + ( ) + ( ) + ( ) ( ) ( ) ( ) (5-4a)
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( ) ( ) ( ) + ( ) ( ) ( ) × ( ) = 0, = 1,2, …

( ) ( ) + ( ) ( ) ( ) = 0 (5-4b)

( ( ) ) + ( ) ( ) ( ) + ( ) ( ) ( ) = 0 (5-4c)

Where D(t) is given by Eqs.(4-5).

The transient response of the ODEs represented by Eqs. (5-4a, b, c) is studied numerically.

Fig. 5-1. The beam model subjected to moving vehicle.

5.3. Critical loading condition
The physical parameters for the beam are the same as the case of moving load, Chapter 4.

Moreover, mv=1kg, kv=980N/m and cv=6.26Ns/m are mass, stiffness and viscous damping of the

moving vehicle and g=9.81m/s2 is the gravitational acceleration. Note that the weight of the

present moving vehicle is the same as moving load in the previous chapter.
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For  the  present  case,  the  maximum deflection  of  the  beam,  2.498mm,  occurs  at V=19.5m/s;

this velocity is slightly less than the critical one for the case of the moving load; see table 5-1 for

details.

Table 5-1. Critical velocities for the traveling load and traveling vehicle.
Moving load Moving vehicle

Undampped
beam

Dampped
beam

Undampped
beam

Dampped
beam

Critical velocity [m/s] 21.5 21.25 19.5 19.5
Mid-span maximum deflection [mm] 1.6217 1.5981 2.5315 2.4946

Absolute maximum deflection [mm] 1.6279
at x=0.53L

1.6042
at x=0.53L

2.5349
at x=0.5175L

2.4980
at x=0.5175L

5.4. Optimization of the dynamic damper
On the view of the results of the previous chapter the best candidate dynamic damper is the

piecewise linear; in order to give a comprehensive view of the performances, such type of

damper is compared with linear and cubic types.

5.4.1. Performance of the monomial stiffness (linear and cubic)

The optimal linear and cubic dynamic dampers are found following the procedure outlined in

the previous section, details are omitted for the sake of brevity.

5.4.1.1. Maximum dissipated energy approach

The portion of input energy dissipated by the viscous damper of the DVA at time  is

computed by the expression (see section 3-3-1 for more details),

= =
[ ( ) ( ) ( )]

[ ( ) ( )]
(5-5)

 is the energy passively absorbed and locally dissipated by the DVA i.e. TMD or NES;

is assumed large enough in order to assure that the transient dynamics is nearly damped;

represents the total portion of the input energy of the beam due to the load and  is the

loading duration.

The numerical value for integrating time is considered t1=150s, this value is large enough to

have almost complete damp of free vibration. Fig. 5-2 presents time history response for the case
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of the beam with optimal linear DVA; it is observable that this value is suitable to evaluated the

portion of input energy absorbed by DVA.

Fig 5-2. Time history response for the case of the beam with optimal TMD; t1=150.

Table 5-2. Optimal energy dissipation for linear TMD and cubic stiffness nonlinear NES under moving load
and moving vehicle excitation.

Case DVA type Excitation Stiffness [Ns/m] d[m]
1 linear TMD Traveling load 900N/m 10.5 0.55L 88.9%
2 Cubic stiffness NES Traveling load 0.3×109N/m3 11 0.53L 87.4%
3 linear TMD Traveling vehcile 925N/m 10.5 0.55L 89.4%
4 Cubic stiffness NES Traveling vehcile 0.13×109N/m3 11.5 0.53L 87.5%

Table 5-2 presents the optimal portion of input energy that linear and cubic stiffness absorbers

are able to absorb. Comparing cases 3 and 4 for the moving vehicle excitation shows that linear

absorber behave better in order to absorb more portion of input energy and damp vibration

sooner. This behavior is similar to the case of the moving load excitation, compare cases 1 and 2.

5.4.1.2. Minimum dynamic deflection approach

The optimal linear and cubic dynamic dampers are found following the procedure outlined in

the section 4-3-1. Fig. 5-2 presents the maximum deflection of the TMD vs. stiffness coefficient

and location. The same as moving load excitation the optimal location for the transient loading as

not at mid-span while it is moved to the right; it depends on the velocity direction: left to right.

The optimal linear dynamic damper (damper location, d=0.55L) corresponds to k=2120N/m, it

allows a reduction of the maximum beam deflection of 6.35% with respect to the bare beam, i.e.
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2.3393mm max deflection; when the dynamic damper is in the middle of the beam, d=0.50L, the

optimum is k=2030N/m, the maximum beam deflection is 2.3427mm (6.22% reduction).

It is to be mentioned that, using a dynamic damper without dissipation results is a better

vibration reduction. It verified for the moving vehicle as well; Fig. 5-3 illustrate this verification.

Using a cubic nonlinear stiffness, one is able to reduce the maximum beam deflection from

2.4980mm (bare beam) to 2.3393mm, i.e., 6.35% reduction; the damper is more effective with

respect to the case of the beam under moving load. Similar to Fig. 5-2, Fig. 5-4 is illustrative

optimal parameters seeking for nonlinear cubic stiffness NES. Table 5-3 summarizes the results,

the viscous damping is set as =0.1 Ns/m.

It mentioned that for the maximum dissipated energy optimization linear TMD presents better

behavior respect to different types of the nonlinear dynamic dampers. Therefore at this stage we

do not examine dissipated energy by absorber anymore.
(a) (b)

Fig. 5-2. Optimal linear absorber parameters; a)Optimal stiffness, b)Optimal location.

Fig. 5-3. Verification of optimal damping for linear absorber.
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Fig. 5-4. Optimal cubic stiffness nonlinear absorber parameters; a)Optimal stiffness, b)Optimal location.

5.4.2. Performance of the piecewise linear stiffness

The nonlinear attachment having a piecewise linear stiffness is now investigated. In order to

find the optimal pair and k, a regular sampling is carried out; the position of the attachment is,

d=0.55L.

Figures 5-5 and 5-6 show the maximum beam displacement versus and k; similarly to the

case of the beam under moving load, the piecewise linear dynamic damper is the most effective

kind of absorber to reduce beam deflection, 8.43% reduction, see table 5-3 (case 4).
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Fig. 5-5. Maximum deflection vs. gap  and stiffness k of the piecewise linear stiffness; the optimum is
k=28000N/m and =0.79mm (2.2874mm max deflection).

Fig. 5-6. Maximum deflection vs. gap  and stiffness k of the piecewise linear stiffness; 3D representation.
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Table 5-3. performance of the nonlinear dynamic damper for the beam under moving vehicle, =0.1 Ns/m.

Case Beam and dynamic damper condition Stiffness Maximum
deflection [mm]

Reduction
Percentage

1 Bare beam 0 2.4980 ----
2 linear dynamic damper c1=2120N/m 2.3393 6.35%
3 Monomial cubic dynamic damper c3=3.5×109N/m3 2.3031 7.80%

4 Piecewise linear dynamic damper k=28000 N/m
=0.79mm 2.2874 8.43%



CHAPTER 6

6. Successive Moving Load Excitation
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6.1. Introduction
A problem of repetitive moving loads is classified in this chapter as one in which a beam is

subject to infinite series of moving loads which repeat at regular time intervals. Such problems

are relevant in the transportation industry as well as in the consumer electronics industry. In a

video cassette recorder, a system of 2-4 heads repetitively cross the magnetic tape as a signal is

read from, or written on to, the video tape. In order to achieve high data density and ensure

signal integrity, the heads must be kept very close to the tape and the spacing variation between

the tape and head must be minimal. Optimizing these conditions requires a sound understanding

of the deflection behavior of the tape under moving loads Ref. [83].

In the present chapter the response of a simply supported beam subjected to infinite sequence

of regularly spaced concentrated moving loads, is determined. Moreover, the performance of

dynamic dampers possessing linear, cubic, 9th power and piecewise linear stiffnesses as well as

linear and cubic nonlinear viscous dampers studied. The critical speed for repetitive loading

differs from the critical speeds for a single load, which corresponds to the apparent critical speed.

Bolotin [84] studied a beam subjected to an infinite sequence of equal loads with uniform

intervals d and constant speed v. In his study, the period d/v of the moving loads has been

identified as a key parameter. For the same problem, Fryba [1] concluded that the response of the

forced steady-state vibration will attain its maximum when the time intervals between two

successive moving loads are equal to some periods of the beam in free vibration or to an integer

multiple thereof [85].

The resonance phenomenon relates to the continuous build-up of the free-vibration response

on the bridge as there are more loads passing by. In contrast, the cancellation phenomenon

implies that the waves associated with the free-vibration responses of the bridge generated by the

sequential moving loads cancel out each other. Both the phenomena of resonance and

cancellation relate to the free vibrations induced by the moving loads. When a moving load has

passed the beam, waves of the sinusoidal form will be induced on the beam. If the time lag of the

wave components induced by each moving load equals a multiple of the period 2 / , (  is the

principal natural frequency); then superposition of all the wave components will result in

amplified responses. This is the so-called phenomenon of resonance. On the contrary, if the time

lag equals an odd multiple of half of the period, the wave components induced by the
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sequentially moving loads will just cancel out, indicating that the phenomenon of cancellation

has  occurred.  Whether  the  phenomena  of  resonance  or  cancellation  will  occur  or  not  depends

only on the free vibration part of the motion. The resonance condition in terms of the speed

parameter =  (L, beam length) is the same for the beam with both the elastic and simple

supports [86].

There is no doubt that, whenever the cancellation speed comes close to or coincides with the

resonance speed, the phenomenon of resonance will be suppressed, meaning that the cancellation

condition is more decisive than the resonance condition.

Timoshenko [87] determined the response of a finite length Euler-Bernoulli beam due to a

single moving load and also found the critical speed of the load. For the periodic travelling load

on the undamped beam a steady-state solution does not exist at a critical speed, as the deflections

continually increase with time. It is noted that as a load traverses the length of the beam, it

undergoes a zero net vertical displacement. Thus it appears that the work of the load should be

zero;  this  is  known as  the  Timoshenko paradox.  It  was  later  pointed  out  by  Timoshenko et  al.

[41] that as a wheel crosses over a beam the orientation of the force must depart slightly from the

vertical; the energy acquired by the beam can be related to the work done by the horizontal

component of the force. In addition, the monograph by Fryba [1] is an excellent reference for

many problems involving moving loads on beams and plates.

In the past several decades, steel truss bridges have often been used in railways for crossing

streams or chasms, because of their advantages of light weight, high strength, and relative

efficiency in spanning short to medium distances. Compared with girder bridges made of pre-

stressed concrete, steel truss bridges are generally more flexible in stiffness. In general, larger

dynamic responses will be induced on a steel truss bridge when travelled by trains at high

speeds. Partly for this reason, the dynamic responses of truss bridges to moving trains have

received considerable attention in the past. For the sake of better riding comfort or

maneuverability of passing trains, the dynamic responses of bridges and moving vehicles should

be kept within allowable limits, say, through increasing of the structural stiffness or

implementation of vibration absorbers on bridges. The tuned mass damper (TMD) devices have

often been adopted as an effective means for suppressing the vibrations induced on long-span

bridges and high-rise buildings due to wind or seismic excitations, Ref[88,89].
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The regular repetitive wheel loads of a moving train imply certain driving frequencies that are

not well spaced when passing a railway bridge. Whenever any of the driving frequencies

coincides with any of the bridge frequencies, resonance may occur on the bridge. For a

continuous bridge with closely spaced frequencies, the first several frequencies of the bridge may

be excited to resonance during the passage of a train, resulting in the so-called multiple

resonance problem, which is harmful not only for the riding comfort of the train, but also for

maintenance of the railway tracks [87].

Nissen et. al. [90] optimized a nonlinear dynamic vibration absorber (DVA) using a softening

spring composed of a stack of Belleville washers [91] for the absorber suspension. The effect of

a nonlinear energy sink (NES) possessing cubic stiffness and linear viscous damper on the

dynamics of a coupled system under periodic forcing is studied by Gendelman et al. [89]. They

showed that depend on the system parameters, quasi-periodic response is expected. The quasi-

periodic response regime may be interpreted as jump between stable branches. However, they

demonstrate that the quasi-periodic response the NES ensure better suppression of oscillations

than the best linear absorber with the same mass.

The snap-through truss vibration absorber, Fig. 6-1, was compared with the linear TMD by

Avramov and Mikhlin, [92]. The mass and stiffness of the linear absorber are suggested to be

equal to the corresponding parameters of the snap-through truss. They showed that the snap-

through absorber leads to small oscillation amplitude of the main subsystem in the wide

frequency range.

Fig. 6-1. The model of the snap-through truss vibration absorber, Ref. [92].

C1

Fcos( t)
m

C
M

C

L L

U

W



Vibration Reduction on Beams Subjected to Traveling Loads Using Linear and Nonlinear Dynamic Absorbers
Prepared by: Farhad Sheykh Samani    Supervisor: Prof. Francesco Pellicano

Shahid Bahonar University of Kerman, Iran  ,   University of Modena and Reggio Emilia, Italy

 84

The performance of a NES possessing nonlinear damping element or nonlinear stiffness

element numerically investigated by Zhang et. al. [93]. They presented that a bifurcation might

occur in the nonlinear spring designed system. The bifurcation can cause a jump in the system

response, which will usually not be acceptable in the engineering design. Moreover, they claimed

that damper nonlinearity can be described by an odd-order polynomial function, of which the

cubic nonlinearity is the simplest and the most effective, Ref. [94].

In this chapter, we develop the strategy of elimination of the undesired beam deflections

subjected to series of the travelling load in steady state regime. This strategy is based on

application of nonlinear stiffness or nonlinear damping. General description of the system is

presented in section 6-2. Moreover, in this section the analytical formula to evaluate the optimal

linear absorber as well  as the resonance and cancellation phenomena is studied. In section 6-3,

we validate the results for transient and steady state response, separately. Section 6-4 defines the

absolute critical loading condition for the present case. The effect of cancellation inside

resonance is illustrated. Optimal linear absorber for our case study is defined in section 6-5. In

section 6-6 we evaluate five different kinds of NES; for each kind, numerical seek in order to

define optimal NES is developed. The behavior of the system response when the response is not

periodic illustrated.

6.2. System description
We Considered the mitigation of a simply support Euler-Bernoulli beam subjected to infinite

equidistance successive moving loads, Fig. 6-2. The dynamic vibration absorber (DVA)

possesses linear or nonlinear spring as well as linear or nonlinear damper. Several kinds of

nonlinearity for the spring and the damper are evaluated.
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Fig. 6-2. the beam model subjected to sequence of moving loads.

6.2.1. Basic equations

The dynamical system can be described by the following model:

, ( , ) + , ( , ) + [ ( ) + ( , )] ( ) = ( , ), (0, ), > 0 (6-1a)

(0, ) = 0, ( , ) = 0, , (0, ) = 0, , ( , ) = 0 (6-1b)

( , 0) = ( ), , ( , 0) = ( ) (6-1c)

( , ) = [ ( )] ( , ) , (0, ), > 0 (6-2a)

( , ) = (6-2b)

, ( ) ( ) ( , ) = 0 , (0) = , , (0) = , > 0 (6-3a)

( ) = ( , ) ( ) (6-3b)

The PDE in equation (6-1a) represent the dynamics of the beam with simply supported

boundary conditions (6-1b) and initial conditions (6-1c). Initial conditions can be zero or when

F0

( ) f(u)

DVA

VV
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there is a variable parameter, these initial conditions can be extract from final conditions of the

preceding variable value. ( ) and g( , ) represent spring and damper forces. These functions

can be linear or nonlinear functions of the relative displacement or velocity, i.e., ( ) and ( );

see equation (6-3b) for definition. ( ) defines  the  location  of  the  DVA; F(x,t)  is  the

external periodic force, equation (6-2a) is excitation force definition. Considering equidistance

loads,  is the distance between two successive loads. [ ( )] defines the location of

the  ith load; ( ) define whether the ith load at t time  lies  on  the  beam  or  that  load  is  out  of

beam boundaries, equation (6-2b).

Equation (6-3a) governs the dynamics of the DVA. y(x,t) is the transverse displacement field

of the beam (down is positive), ,  (similar meaning for the other derivatives), E is the

Young’s modulus, I is the moment of inertia of the cross section area, m= A is the mass per unit

length, is the material density, A is the cross section area, v(t) is the absolute position of the

mass m0, x=d represents the location of the damper on the beam,  is the mass of the DVA.

Moreover,  is the Dirac function and H(t) is the Heaviside function:

( ) = 0, < 0
1, > 0 (6-4)

The dynamics of the system (6-1), (6-2) and (6-3) is analyzed after projecting the partial

differential equation (6-1a) into a complete and orthonormal basis; for the present problem the

eigenfunctions of the linear operator representing the simply supported beam with no

attachments can be used,

( ) = (2 ) ( ), = ( ) ( ) , = 1,2, … (6-5a)

Where is the natural frequency of the rth mode.

The eigenfunctions satisfy the following orthonormality conditions,

( ) ( ) = ; ( ) ( ) = , , = 1,2, … (6-5b)

Where  is Kronecker’s delta and ( ) ( ) .

It can be assumed that the transverse vibration of the beam is expressed in the form
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( , ) = ( ) ( ) (6-6)

Where ( ) are unknown functions of time (modal coordinates) and ( ) are the

normalized eigenfunctions.

By substituting equation (6-6) into equation (6-1) and (6-3), projecting on the pth

eigenfunction and using the orthonormality conditions, one obtains

( ) + 2 ( ) + ( ) + ( ) + ( ) ( ) = ( ), = 1,2, … (6-7a)

( ) ( ) + ( ) = 0 (6-7b)

Where ( )  and ( ) and ( ) due to stiffness and damper of the DVA which

will define later. A viscous damping term is added to the generic modal equation (6-7a) after

projection. The periodic forcing function expanded using Fourier series expansion:

( ) = +
2

+
2

, = 1,2, … (6-8a)

=
2

( , ) ( ) , = 1,2, … (6-8b)

=
2

( , ) ( )
2

, = 1,2, … , = 1,2, …
(6-8c)

=
2

( , ) ( )
2

, = 1,2, … , = 1,2, …
(6-8d)

 is the excitation period; nL is the minimum number of loads lying on the beam, i.e.

the integer part of the .

6.2.2. Optimal linear DVA

In order to suppress the first resonance of a beam subjected to periodic load, one need to

evaluate the equivalent mass of the beam, which depends on the position of the DVA, Ref. [95].

Considering the principal mode shape of the undamped beam the optimal values for the stiffness

and damper of the linear DVA is as follow:
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=
1 +

(6-9a)

= 2
3

8(1 + )
(6-9b)

Where  is the principal natural frequency of the beam, =  is the mass ratio,  is the

beam equivalent mass, equation (6-10).

=
2

(6-10)

Bigger mass ratio cause better vibration suppression; so minimum beam equivalent mass is

desirable. Clearly, as expected, the optimal position to attach a DVA to a simply supported beam

to suppress the first mode, is the middle of the beam. On the other hand, it should be kept in

mind that a large DVA mass may not be desirable from a practical point of view, due to the

increase of mass of the total system.

6.2.3. Resonance and Cancellation

The resonance phenomenon relates to the continuous build-up of the free-vibration response

on the bridge as there are more loads passing by. In contrast, the cancellation phenomenon

implies that the waves associated with the free-vibration responses of the bridge generated by the

sequential moving loads cancel out each other. Both the phenomena of resonance and

cancellation relate to the free vibrations induced by the moving loads.

When a moving load has passed the beam, waves of the sinusoidal form will be induced on

the beam. If the time lag of the wave components induced by each moving load equals a multiple

of the period 2 ; then superposition of all the wave components will result in amplified

responses. This is the so-called phenomenon of resonance. On the contrary, if the time lag equals

an odd multiple of half of the period, the wave components induced by the sequentially moving

loads will just cancel out, indicating that the phenomenon of cancellation has occurred. Whether

the phenomena of resonance or cancellation will occur or not depends only on the free vibration

part of the motion.

To evaluate the resonance and cancellation phenomena, only the first mode of vibration of the

beam need to be considered, Ref. [86]. With  denoting the exciting frequencies of the moving
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loads, . The speed parameter Sr is defined as the ratio of the exciting frequency to

the frequency of the beam:

= = (6-11)

For undamped beam the condition of resonance occur when Sin( /2 ) = 0, i.e. ,

with i=1,2,3,… , Ref. [85]. The resonant speed parameter can be found as:

=
2

, = 1,2,3, … (6-12)

Which implies that in the principal resonance condition, the speed, loads distance ratio is:

=
2

, = 1,2,3, … (6-13)

Note that the i indicator is differ from indicator for the mode shapes and the present formula is

for the principal mode function.

By letting i=1,2,3..., the equation (6-12) indicates that resonance may occur at the following

speeds: S1=0.50 /L, 0.25 /L, 0.167 /L, 0.125 /L...,with diminishing values. Since a train is

accelerated from zero to its full speed, it becomes obvious that resonance of certain levels will

always be encountered by trains during their motion.

The condition of cancellation is met whenever Cos( /2 ) = 0; by definition of =

( ), the speed parameter can be determined from the condition of cancellation as follow:

=
1

2 1
, = 1,2,3, … (6-14)

Since the effect of cancellation remains always valid, regardless of occurrence of resonance.

Whenever the cancellation speed comes close to or coincides with the resonance speed, the

phenomenon of resonance will be suppressed, meaning that the cancellation condition is more

decisive than the resonance condition, Ref. [85].

From applicable point of view, the resonant response induced by high speed trains will reach

its maximum, when S1 equals the first equals the first resonant speed, i.e. 0.5 /L. In practice, the

first resonance can be circumvented through the selection of car length or span length for the

beam such that the condition of cancellation is enforced. Moreover, in the case of constant load

distances, the principal natural frequency of the beam (bridge) can be manipulate to have the



Vibration Reduction on Beams Subjected to Traveling Loads Using Linear and Nonlinear Dynamic Absorbers
Prepared by: Farhad Sheykh Samani    Supervisor: Prof. Francesco Pellicano

Shahid Bahonar University of Kerman, Iran  ,   University of Modena and Reggio Emilia, Italy

 90

condition  of  cancellation,  Eq.  (6-14),  in  the  velocity  of  resonance,  Eq.  (6-12).  For  instance,  be

letting the first resonant speed, S1=0.5 /L, equal to the speeds for cancellation, one obtains:

= 0.5, = 1,2,3, … (6-15)

This is the condition cancellation when the resonant response occurs, which is irrespective of

the speed parameter S1. For instance consider i=2 or = 2 3 ; means when the loads distance is

equal to 0.667L the condition of cancellation occurs and the beam without attachment does not

vibrate due to the sequence of travelling loads.

6.3. Validations
For the case of the beam subjected to transient travelling single load with linear and cubic

nonlinear attachments, some comparisons have been done in Ref.[72] .To model the beam

without attachment (bare beam) subjected to successive loading, consider ( ) = 0 and ( ) =

0 in equation (6-7a).

6.3.1. Transient response comparisons

In order to evaluate the accuracy of the present model possessing bare beam, the transient

response evaluated with those from Ref. [96]. Consider the model of figure 6-3: the beam

subjected to two series of sequential traveling loads with the same magnitude, F0. The following

series enter the beam with the delay, . The basic equations remain unchanged, while

Eq. (6-8a) should change to Eq. (6-16).

( ) = +
2

+
2

+

+
( ) ( )

[ ],        = 1,2, …

(6-16)

Savin, Ref. [96], compared his results with measured accelerations on an existing railway

bridge in France. In his study the number of loads is finite, 5 wagons, while in the present study

the infinite number of loads is considered, i.e. the results for the transient time till 6th load enter

the beam are comparable. The following numerical parameters are considered; EI=1.12(1011),

A=34088kg/m, L=20m, p=0.025 (p=1, 2, ...), =24m and Lc=18m. As Savin, pointed out, the
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force magnitude calculated = (215.6 + 22 × 9.806) 2 = 215.6kN from Ref. [85]. For all

computations, 3 mode shapes are considered, Ref. [72].

Figure 6-4 shows the comparison for the transient response between the present results and

the results of Ref. [96]. The velocity is 589.7km/h, which is a critical speed. In the present model

with the input data mentioned above, at t=0.733s the 6th load enter the beam; the comparison

until this time gives accurate agreement.

Fig. 6-3. the beam model subjected to two series of sequential moving loads.

Fig. 6-4. time history of the mid-span deflection, ___:present results, *:Ref. [96].

6.3.2. Performance of Fourier series expansion
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Consider figure 6-2 without attachment and single sequence of moving loads. Two method for

load applying is presented: i) Periodic loading taking advantage of Fourier series; ii) Applying

huge repetitive moving loads following each other (direct integrating). For the computations, the

second approach takes much more time respect to the first one. In this method the superposition

of passing several travelling single loads evaluated. The following numerical parameters are

considered: EI=13959, A=7.038kg/m, L=4m, p=0.01 (p=1, 2, ...), =1.33m and V=6.12m/s.

These parameters is used for all numerical computations.

Fig. 6-5. Time history comparison between direct integrating ( ) and using Fourier series expansion(-----);
a: direct integrating, b: Fourier series expansion, c: time history comparison, transient response, d: time

history comparison, steady state response.

Figure 6-5a shows the mid-span deflection time history with direct integrating loading; the

number of loads that should travel on the beam during the integrating time (25 seconds) is 118;

this is why this method is time consuming. The mid-span deflection time history, taking

advantage of Fourier series expansion, is presented in figure 6-5b. In this method at initial time

there are several loads on the beam while in previous method at t=0 the first load enter the beam.
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Figures 6-5c and 6-5d show the initial transient and passing from transient to steady state

response. Moreover, table 1 shows the mid-span maximum deflections vs. time for the two

present methods. The differences in steady state response is vanished. From present

comparisons, for the steady state response the accuracy of the Fourier series load expansion is

Free of ambiguity. For different velocities and load distances the convergence of Fourier series

evaluated, 3 terms of this series found accurate enough for our purpose; for the sake of brevity

details are omitted.

Table 6-1. The comparison between direct loading and Fourier series expansion.
Time [sec] y(L/2,t) [mm]

direct integrating
y(L/2,t) [mm]
Fourier series

Error percentage

3.4307 2.8956 1.7823 38.448
6.8614 2.9168 2.4833 14.861
10.292 2.9266 2.7578 5.766
13.722 2.9309 2.8652 2.241
17.153 2.9329 2.9073 0.872
20.584 2.9337 2.9238 0.339
24.015 2.9341 2.9302 0.132
27.445 2.9342 2.9327 0.051
30.876 2.9343 2.9337 0.019
34.307 2.9343 2.9341 0.007

6.4. Critical loading condition
Equation (6-13) give the critical velocity in resonance condition as a function of principal

beam natural frequency, 1 and load distance, . For a define beam structure, i.e. defined 1, the

lowest critical velocity is correspond to i=1:

= ( 2 ) (6-17)

Equation (6-17) is found considering the first mode shape and it is equivalent to the first term

in Fourier series. In order to evaluate the effect of other mode shapes and Fourier series terms,

consider equation (6-7a) for the bare beam, i.e. ( ) = 0 and ( ) = 0. The loading function can

expand as follow:

( ) = (6-18a)

F , =
1
T

F (t) e dt (6-18b)
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Where, nf  is the number of considered terms for Fourier series, = 2  is the excitation

frequency. For the case of beam without attachment, the coefficients matrixes are orthogonal so

the modal coordinates can obtain as follow

( ) = + 2 + (6-19)

The maximum amplitude of the modal coordinates creates the maximum value of dynamic

displacement;  so  for  the  case  of  the  small  damping, 0, resonance condition obtain as

follow:

+ = 0 = = 2 (6-20)

Figure 6-6 shows the seeking among velocities and load distances in order to define the

maximum absolute deflection during steady state response. Numerical values are those in section

3.2. In figure 6-6a absolute maximum mid-span deflection is presented; when  is small, i.e.

there are many successive loads on the beam, simultaneously and so the static deflection

increase. Figure 6-6b shows the mid-span dynamic deflection (deflection amplitude) in one

period: = ( ) 2. Equation (6-20) define straight lines for different mode shapes

and Fourier series terms. Comparison between this theoretical lines and numerical seeks is

available in figure 6-6c; for red line: p=1, if =1, green line: p=1, if =2, white line: p=1, if =3 and

yellow line: p=2, if =1. The effect of second and even the third Fourier series is not negligible,

while the second mode shape does not produce big deflections. Note that the effect of second and

third mode shapes can be effective when the vibration of the first mode damp out using a

dynamic vibration absorber. Figure 6-6d shows the mid-span dynamic deflection in 3D map.

Resonance condition is evaluated in figure 6-7. Maximum absolute deflection and dynamic

deflection in the steady state response presented. Resonance condition for the principal mode

shape and first Fourier series is convinced, i.e. = ( ) . Regardless of the occurrence of

the resonance, effect of cancellation remains valid; it can be observe from this figure, see Eq. (6-

14). Critical load distance and corresponding critical velocity can evaluate from this graph:

=5.84m and V=25.53m/s; ymax=25.27mm. For the present numerical parameters,

1=27.47Rad/s and T1=0.2287s.
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Fig. 6-6. Maximum deflection vs. velocity and load distance; a: Maximum mid-span deflection, b: Dynamic
mid-span deflection, c: Resonant condition lines on maximum mid-span deflection, d: 3D representation of

dynamic mid-span deflection.
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Fig. 6-7. Deflection vs. load distance in resonant velocity; -----:Dynamic deflection, --*--:Maximum deflection.

6.5. Performance of linear DVA
To suppress the oscillation of the beam subjected to sequence of travelling loads, one can take

advantage from Frahm linear DVA, Ref. [15]. Den Hartog [42] presented formulation to obtain

optimal linear DVA. Suppose that the absorber is designed to reduce the amplitude of the beam

when it is at resonance. In this case the damping value is zero, =0 in equation (6-21b). The

natural frequency of the DVA should be equal to the frequency of the periodically varying force.

In equation (6-7) for the linear stiffness, and linear damping the forcing functions are:

( ) = ( ) ( ) ( ) (6-21a)

( ) = ( ) ( ) ( ) (6-21b)

Suppose numerical parameters which create maximum deflection, =5.84m and V=25.53m/s.

= 27.47 = 1062.2 . The optimal location for the DVA is at the

mid-span, d=L/2; while for the case of the transient loading, optimal locations near mid-span has

been found, Ref. [72]. Figure 6-8 shows the mid-span time history deflection for the resonance

condition.
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It is well known that linear DVA which optimized for resonance condition cannot remain

effective for other excitation frequencies. Figure 6-9 shows the performance of this DVA for

other excitation frequency, i.e. travelling load speeds. Two new peaks appear where the

undamped linear TMD behave worse than bare beam. To overcome this drawback, Den Hartog

proffered the damped TMD. Equation (6-9) gives the optimal values for damped linear TMD;

equation (6-10) calculates the beam equivalent mass considering the only first mode shape. For

optimal DVA location, d=L/2, Simple computations presents me=14.078kg, k=877.9N/m and

=12.98Ns/m, ymax=2.58mm. Moreover, to assess the effectiveness of higher mode shapes and to

include the natural structural damping , p, seeking has been done by solving  numerically

equations (6-7) and (6-8). Fig. 6-10. presents the maximum absolute mid-span deflection for

different velocities. The optimal set is defined as k=870.0N/m and =14.0Ns/m,

ymax=2.56mm,Vcr=26.6m/s. The performance of this optimal TMD is evident in figure 6-9 (black

thick line).

Fig. 6-8. Mid-span time history deflection; ……: Without DVA, ____: With DVA.
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Fig. 6-9. Maximum mid-span beam deflection; …..: Bare beam, ____ with undamped TMD (optimized for
resonance condition), : with damped TMD (overall optimized).

Fig. 6-10. Overall seek to define optimal linear TMD.
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numerical seeking among DVA parameters. To define the boundary values for the numerical

search, we took advantage from the point that the order of the stiffness force and damping force

for a nonlinear NES is the same as linear one. By evaluating maximum deflection and velocity of

the linear absorber, i.e.  and  (see Eq. (6-3b)) we are able to determine the minimum

and maximum NES parameters values.

6.6.1. Cubic stiffness NES

Nonlinear energy sinks (NESs) possessing nonlinear cubic stiffness and linear damping for

the systems under periodic excitation has been studied by several researchers; e.g. find Refs. [97-

100]. In equation (6-7) for the linear stiffness, and linear damping the forcing functions are:

( ) = ( ) ( ) ( ) (6-22a)

( ) = ( ) ( ) ( ) (6-22b)

The optimal NES parameters is found by seeking for different velocities. By linear absorber

the response to the periodic excitation is periodic, while, in some cases, cubic stiffness NES with

small damping present quasiperiodic responses, see Ref. [100]. Figure 6-11 present the

maximum deflection vs. cubic stiffness deflection for damping coefficient =11.2Ns/m. This

graph is correspond to =5.84m and V=25.53m/s. Forward and backward are due to initial

conditions which is the last response of previous stiffness. In figure 6-12 steady state responses

for a candidate stiffness in periodic response region, k3=80(106)N/m3 and another one in

quasiperiodic region, k3=30(106)N/m3 are presented. Note that, while figure 6-11 shows

minimum stiffness less than 2mm for critical velocity, the absolute maximum velocity is 3.59mm

for V=24.34m/s with the optimal set: k3=45(106)N/m3 and =23.25Ns/m. By increasing damping

coefficient quasiperiodic response change to periodic response; while with high damping

minimum deflection increase.

Poincare map (first recurrence map) is the intersection of a periodic orbit in the state space of

a continuous dynamical system with a certain lower dimensional subspace, called the Poincare

section, transversal to the flow of the system. More precisely, one considers a periodic orbit with
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initial conditions on the Poincare section and observes the point at which this orbits first returns

to  the  section,  thus  the  name  first  recurrence  map.  The  transversality  of  the  Poincare  section

basically means that periodic orbits starting on the subspace flow through it and not parallel to it.

Fig. 6-11. Maximum overall deflection for wide range velocities, : Forward, -----: Backward.

Fig. 6-12. Steady state responses, ____: k3=30(106)N/m3, -----: k3=80(106)N/m3.

Table 6-2, presents the behavior of the system with cubic stiffness NES. The characteristics of

each case is defined in table 6-3, separately. t0 is the time big enough to convince the initial of

the steady state response; i is an integer. Case 1 give a periodic steady state response; phase

portrait is a single close orbit ;Poincare map is a unique point, {0.585,-12.742}, the small area

distribution is due to numerical errors. See appendix C for description of phase portrait and
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appendix D for description of Poincare map. alike first case, the second one also presents

periodic response, while the Poincare map illustrate that the response converge to the unique

point. Case 3 presents quasiperiodic response; phase portrait is a close curve after several periods

and  Poincare  section  is  a  close  orbit  instead  of  single  point  for  periodic  response.  Case  4

illustrate chaotic solution; phase portrait is open curve and Poincare section shows a cloud of

points.  This orbit is a aperiodic or  chaotic attractor. In this case response is sensitive to initial

condition. Cases 5 to 8 present chaotically modulated motion, see Ref. [101]. In these cases

special shape for the Poincare map is visible. comparing case 7 and 8 shows that by increasing

NES damping the response pass from chaotically modulated motion to quasi periodic motion.
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Table 6-2. Illustration of the NES behavior with different stiffness and damping coefficients, V=40m/s.
C

as
e Steady state response

x axis: t [s]
y axis: y(L/2,t) [mm]

Phase portrait
x axis: y(L/2,t)  [mm]

y axis: dy(L/2,t)/dt  [mm]

Poincare map
x axis: y(L/2,t0+iT)  [mm]

y axis: dy(L/2, t0+iT)/dt  [mm]
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C
as

e Steady state response
x axis: t [s]

y axis: y(L/2,t) [mm]

Phase portrait
x axis: y(L/2,t)  [mm]

y axis: dy(L/2,t)/dt  [mm]

Poincare map
x axis: y(L/2,t0+iT)  [mm]

y axis: dy(L/2, t0+iT)/dt  [mm]

VII

Table 6-3. NES characteristics for the cases in table 6-2.
Case number k3(106)[N/m3] [Ns/m]

I 50 5
II 20000 20
III 50 0.1
IV 5000 0.1
V 5000 5
VI 5000 5
VII 1000 10

6.6.2. High odd-order polynomial stiffness NES

In order to investigate the way in which an higher odd-order monomial stiffness modifies

energy distribution fifth power monomial stiffness is studied. However the seventh power

stiffness is studied as well, but no improvement has been found; so, for the sake of brevity those

results are omitted. By fifth power stiffness, stiffness force in equation (7) is:

( ) = ( ) ( ) ( ) (6-23a)

( ) = ( ) ( ) ( ) (6-23b)

Damping force remain linear, Eq. (6-23b). Figure 6-13 shows an overall seek to define the

optimal fifth power monomial stiffness coefficient. Several damping examined; just two

damping close to optimum presented in this figure. In optimal set, k5=2.16(1012)N/m5 and

=30Ns/m, maximum deflection is 4.48mm for V=24m/s.
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Fig. 6-13. Maximum deflection vs. fifth power monomial stiffness, : =30Ns/m, : =35Ns/m.

6.6.3. Piecewise linear stiffness

Consider the model of figure 6-2 with a piecewise linear stiffness NES. Fig. 6-14 shows the

schematic stiffness force of the piecewise linear NES and Eq. (6-24a) present its governing

equation.

Fig. 6-14. the schematic stiffness force versus stiffness deflection for piecewise linear dynamic damper.
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( ) = × ( ) ( ) ( ) × ( ) ( ) ( )

+k × a (t) (d) v(t) × H a (t) (d) v(t)

(6-24a)

( ) = ( ) ( ) ( ) (6-24b)

The piecewise stiffness effect when the clearance amplitude, c is exceeded. This represents a

sudden change in the system properties which accounts for the inherent hard nonlinearity of the

piecewise linear system.

Figure 6-15 shows the overall seek in order to define the optimal stiffness and clearance set

for the optimal NES. minimum deflection 2.58mm obtained by kp=1024N/m, c=0.61mm and

=14Ns/m. The variation of the maximum deflection vs. velocity around critical velocity zone is

presented in figure 6-16. With the present NES, new critical velocity, which maximum deflection

occurs, is 24.13m/s.

Fig. 6-15. Overall search to determine the optimum NES with piecewise linear stiffness.
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Fig. 6-16. Beam mid-span maximum deflection vs. velocity.

Suppose that the desire is to obtain minimum beam deflection at critical condition, i.e.

V=25.53m/s and =5.84m. Figure 6-17 present maximum deflection for this loading condition

and different NES characteristics parameters, NES linear low damping remains constant,

=0.1Ns/m. In table 6-4 the illustration of the steady state response, phase portrait and

corresponding Poincare map is presented for different NES parameters; see table 6-5 for the

parameter values. Case 1 is the case with periodic response; this point lie on blue area in figure

16. All points which lie on the areas with regular behavior present periodic steady state response.

Cases 2 and 3 lie on the area ‘A’; parameters in this area present a unique Poincare section

shape. It is true even for the area ‘B’; cases 4,5 and 6 correspond to this area. 7th case is for the

one of the point which gave irregular behavior in area ‘C’; Poincare map is 10 separate points

which presents super harmonic modulation.

Figures 6-18 shows the bifurcation diagram of the Poincaré map for the =0.1Ns/m. The

control parameter is the piecewise linear stiffness coefficient. yi=y(L/2,t0+iT), i=1,2,3,…,N; N is

an integer big enough to illustrate the system behavior, here N=2000. In figure 6-18(a),

c=0.47mm and in figure 6-18(b) c=0.99mm. Figures 6-18(a) and 6-18(b) are correlated to the

lines EF and GH of figure 6-17 with =0.1Ns/m.
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Fig. 6-17. Beam mid-span maximum deflection; V=25.53m/s and =5.84m.

Table 6-4. Illustration of the NES behavior with different stiffness and damping coefficients, V=25.53m/s,
=5.84m and =0.1Ns/m.

C
as

e Steady state response
x axis: t [s]

y axis: y(L/2,t) [mm]

Phase portrait
x axis: y(L/2,t)  [mm]

y axis: dy(L/2,t)/dt  [mm]

Poincare map
x axis: y(L/2,t0+iT)  [mm]

y axis: dy(L/2, t0+iT)/dt  [mm]
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C
as

e Steady state response
x axis: t [s]

y axis: y(L/2,t) [mm]

Phase portrait
x axis: y(L/2,t)  [mm]

y axis: dy(L/2,t)/dt  [mm]

Poincare map
x axis: y(L/2,t0+iT)  [mm]

y axis: dy(L/2, t0+iT)/dt  [mm]

IV

V
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VII

Fig. 6-18. Bifurcation diagram; V=25.53m/s and =5.84m, =0.1Ns/m; a: c=0.47mm, b: c=0.99mm.
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Table 6-5. NES characteristics for the cases in table 4.
Case number kp[N/m] c [mm]

I 1424 0.984
II 1184 0.984
III 1112 0.624
IV 1424 0.672
V 1544 1.008
VI 1520 0.984
VII 1736 0.912

6.6.4. Cubic damping NES

Suppose NES containing linear stiffness and cubic viscous damping. In this case the stiffness

and damping force functions in equation (6-7) are:

( ) = ( ) ( ) ( ) (6-25a)

( ) = ( ) ( ) ( ) (6-25b)

Fig. 6-19. Seeking between stiffness and cubic damping coefficients.

In order to determine the optimal parameter set for the present NES, we sought between

different linear stiffness and cubic damping coefficients and for each case the maximum

deflection in steady state response is determined for different velocity values. Figure 6-19 shows

the maximum deflection among different velocities and each stiffness-damping parameter set.
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The behavior is regular and responses for this parameters ranges are periodic. optimal set is

defined as k=885N/m and 3=997.5Ns3/m3. Using this optimal cubic damping NES critical

velocity is at V=20.82m/s and ymax=2.603mm.

6.6.5. Linear-quadratic damping NES

In order to reduce system deflection at critical loading conditions, some researchers suggested

the nonsymmetrical damping, e.g. Starosvetsky and Gendelman [102] applied piecewise

quadratic damping to a system subject to harmonic excitation. Consider linear stiffness force

function and linear-quadratic nonlinear damping:

( ) = ( ) ( ) ( ) (6-26a)

( ) = ( ) ( ) ( ) + ( ) ( ) ( ) (6-26b)

Numerical seek shows that maximum deflection, ymax=2.42mm, can get with optimal set:

k=870N/m, 1=14Ns/m and 2=132.8Ns2/m2; it shows 5.8% deflection reduction respect to the

system with optimal linear DVA. With linear-quadratic optimal damper, the critical velocity is

27.10m/s, see figure (6-20a). Figure (6-20b) presents the absorber mass maximum displacement

for linear TMD and linear-quadratic damping NES.

Figure 6-21 shows the DVA damper force for linear and linear-quadratic dampers. Note that if

the damping force exceed zero when elongation speed is positive, instability occurs. From

applicable point of view, in order to conquest this lack one can add the cubic term with adjust

coefficient to the quadratic damping; this cubic term will be effective when the DVA elongation

speed is too high.

The performance of the linear TMD and different types of nonlinearities for NESs are listed in

table 6-6. Deflections are absolute maximum deflections for different load velocities. Critical

load distances, =5.84m, is considered. Results show that NES possessing linear stiffness and

linear-quadratic damping is more effective respect to linear TMD. Using this type of nonlinearity

we are able to decrease beam deflection 5.8% more than pure linear DVA. The quadratic part of

the present damping does not effect when the load velocity is far from critical one; i.e. the

behavior of this NES is similar to the linear TMD. Around critical velocity, where the deflection
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and velocity amplitudes increase the quadratic term presents its performance and restrain the

main structure, beam, from high deflection.

Fig. 6-20. a: Maximum mid-span beam deflection, b: Maximum DVA displacement vs. velocity variation;
:linear DVA,   :Quadratic NES.

Fig. 6-21. Damping force vs. DVA elongation speed; :linear-quadratic damping, ____linear damping.

Table 6-6. The performance of the different types of the TMD and NESs.
Type of DVA yopt[mm] Vcr[m/s] Optimal parameter set
Bare beam 25.27 25.5 Without attachment
Linear TMD 2.56 26.6 k=870.0N/m, =14.0Ns/m
Cubic stiffness NES 3.59 24.3 k3=45(106)N/m3, =23.25Ns/m
5th order monomial stiffness 4.48 24.0 k5=2.16(1012)N/m5, =30Ns/m
Piecewise linear stiffness 2.58 24.1 kp=1024N/m, c=0.61mm, =14Ns/m
Cubic damper NES 2.60 20.8 k=885N/m, 3=997.5Ns3/m3

Linear-quadratic damper NES 2.42 27.1 k=870N/m, 1=14Ns/m, 2=132.8Ns2/m2
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CHAPTER 7

7. Conclusion Remarks
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In  this  dissertation  the  performance  of  the  linear  and  several  types  of  nonlinear  dynamic

absorbers under moving load excitation is investigated. Types of nonlinearities that considered

for nonlinear energy sinks are: cubic stiffness, high odd order monomial stiffness (5th, 7th and 9th

power), polynomial and piecewise linear stiffness as well as linear, cubic and combination of

linear quadratic damping. Excitations which are applied on simply supported Euler Bernoulli

beam are i) transient single traveling load without inertia, ii)transient traveling vehicle

considering the effects of inertia and the effects of stiffness and damping of the traveling vehicle,

iii)  the infinite series of sequential  traveling loads; this excitation presents nonzero steady state

response under periodic excitation. For the first two types of excitations, the analysis has been

focused on the transient structural response. Several optimization strategies are considered in

order to obtain the best set of parameters considering the beam maximum dynamic amplitude or

the energy absorbed by dynamic damper.

From present dissertation we can conclude the results as follow:

1. Under transient traveling load excitation, either load or vehicle, piecewise linear stiffness

and linear damping is the best type of dynamic damper in order to reduce maximum beam

deflection.

2. Under transient traveling load excitation, either load or vehicle, linear stiffness and linear

damping (classical TMD) is the most effective type of dynamic damper in order to

dissipate maximum portion of energy.

3. Under successive traveling loads excitation the dynamic damper possessing linear

stiffness and combination of linear-quadratic nonlinear presents the best performance for

different velocities values.

It is confirmed that dynamic dampers are capable to reduce the vibration amplitude also in the

case of excitation due to moving loads: essentially nonlinear (cubic) dynamic dampers are more

suitable for reducing the maximum amplitude of vibration respect to linear TMD. Linear

dynamic dampers behave better when the goal is to maximize the vibration energy pumped out

from the structure.

Under transient excitations the location of the absolute maximum deflection of beam is close

to  the  mid-span  (x=0.53L) for the transient excitation problems; the optimal location for the

cubic stiffness nonlinear damper is at the same location (d=0.53L), for linear damper it is at

d=0.55L. The maximum portion of input energy absorbed by nonlinear dynamic damper is about
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87% regardless of kind of loading or beam geometry. Under periodic excitation optimal location

is at the mid-span.

Using these dynamic dampers can improve fatigue life of structures. Firstly, the dynamic

absorber causes a faster vibration damping, this implies that the number of cycles decreases;

secondly, a moderate reduction of the maximum deflection greatly increases the fatigue life.

Using cubic stiffness nonlinearity and under transient excitation interesting conservation laws

are found in terms of optimal parameters and beam geometry: i) the optimal stiffness  for

reducing the maximum beam vibration and absorbing the vibration energy is related to the beam

length: = constant; ii) the optimal damping for maximizing the energy pumped out from

the structure is related to the beam length: = constant; iii) the optimal damping for

reducing  the  maximum  beam  vibration  is  zero.  It  is  worthwhile  to  stress  that  such  simple

conserved quantities are extremely useful for designers as they allow the generalization of the

results to a class of problems.

Moreover, results show that under transient excitations the dynamic dampers with monomial

stiffness with higher exponents are more effective in reducing the maximum beam deflection.

Moreover, optimal dynamic damper having piecewise linear stiffness is the most powerful

passive dynamic damper, when the goal is to reduce the maximum beam deflection for both

transient moving loads and moving vehicles excitations. When the goal of optimization is the

maximum portion of input energy dissipated by dynamic damper, the optimum classical tuned

mass damper is the most effective absorber.

Under successive traveling loads depend on velocity and distance between loads, the

resonance and cancellation phenomena can come off. For transient excitation when one defines

optimal set parameters for a special type of dynamic damper under critical loading condition, the

defined absorber is also effective for other velocities, i.e. the maximum structure deflection with

that optimal absorber is always less than structure deflection without absorber. Under periodic

excitation, optimizing the absorber for critical loading (resonance condition) cause two separate

new critical condition which constitute two new deflection peaks. For periodic excitation overall

seek is needed in order to verify each optimal parameters set for different loading conditions.

We found that the vibration absorber possessing piecewise linear stiffness and linear damping

which is the most effective type for reducing beam deflection under transient loading has the

same performance as optimal linear absorber, not more. While, under successive moving load for
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some parameter sets of nonlinear stiffness absorbers quasi periodic, super harmonic and chaotic

responses appear; these responses are not desire because of high amplitude of deflection that

usually appears in this responses. Nonlinear damping absorbers present periodic responses for

both two nonlinear damping types which have been studied in this dissertation. NES possessing

linear stiffness and linear-quadratic damper is the most effective dynamic damper for reducing

beam vibration. Using this type of nonlinearity we are able to decrease beam deflection up to

90% respect to the beam without attachment. This performance is 5.8% more than pure linear

DVA. The quadratic part of the present damper does not effect when the load velocity is far from

critical one; i.e. the behavior of this NES is similar to the linear TMD. Around critical velocity,

where the deflection and velocity amplitudes increase the quadratic term presents its

performance and restrain the main structure, beam, from high deflection.

Some suggestions for improving present research depends on application is sited bellow:

1. Considering nonlinear beam deflection, i.e. large beam deflections.

2. Model of beam with variable cross section of area.

3. Simulating more complex loading (one or two degree of freedom car, with stiffness).



APPENDIXES
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A. Dirac delta function

The Dirac delta or Dirac's delta is a mathematical construct introduced by theoretical physicist

Paul Dirac. Informally, it is a generalized function representing an infinitely sharp peak

bounding unit area: a 'function' (x) that has the value zero everywhere except at x = 0 where its

value  is  infinitely  large  in  such  a  way  that  its  total  integral  is  1.  In  the  context  of  signal

processing it is often referred to as the unit impulse function.

The Dirac delta is not strictly a function, because any function that is equal to zero

everywhere but a single point must have total integral zero. While for many purposes it can be

manipulated as a function, formally it can be defined as a distribution that is also a measure. In

many applications, the Dirac delta is regarded as a kind of limit (a weak limit) of a sequence of

functions having a tall spike at the origin. The approximating functions of the sequence are thus

approximate or nascent delta functions.

The Dirac delta is used to model a tall narrow spike function (an impulse), and other similar

abstractions such as a point charge, point mass or electron point. For example, to calculate the

dynamics of a baseball being hit by a bat, one can approximate the force of the bat hitting the

baseball by a delta function. In doing so, one not only simplifies the equations, but one also is

able to calculate the motion of the baseball by only considering the total impulse of the bat

against the ball rather than requiring knowledge of the details of how the bat transferred energy

to the ball.

In applied mathematics, the delta function is often manipulated as a kind of limit (a weak

limit)  of  a  sequence  of  functions,  each  member  of  which  has  a  tall  spike  at  the  origin:  for

example, a sequence of Gaussian distributions centered at the origin with variance tending to

zero.

An infinitesimal formula for an infinitely tall, unit impulse delta function (infinitesimal

version of Cauchy distribution) explicitly appears in an 1827 text of Augustin Louis Cauchy,

[103]. Siméon Denis Poisson considered the issue in connection with the study of wave

propagation as did Gustav Kirchhoff somewhat later. Kirchhoff and Hermann von Helmholtz

also introduced the unit impulse as a limit of Gaussians, which also corresponded to Lord

Kelvin's notion of a point heat source. At the end of the 19th century, Oliver Heaviside used

formal Fourier series to manipulate the unit impulse, [104]. The Dirac delta function as such was
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introduced as a convenient notation by Paul Dirac in his influential 1927 book Principles of

Quantum Mechanics, [105]. He called it the "delta function" since he used it as a continuous

analogue of the discrete Kronecker delta.

A-1. Definition

The  Dirac  delta  can  be  loosely  thought  of  as  a  function  on  the  real  line  which  is  zero

everywhere except at the origin, where it is infinite,

( ) = ,      = 0
0,           0

and which is also constrained to satisfy the identity

( ) = 1

This is merely a heuristic definition. The Dirac delta is not a true function, as no function has

the above properties. Moreover there exist descriptions of the delta function which differ from

the above conceptualization. Figure A-1 shows a schematic representation of the Dirac delta

function by a line surmounted by an arrow. The height of the arrow is usually used to specify the

value of any multiplicative constant, which will give the area under the function. The other

convention is to write the area next to the arrowhead.

Fig. A-1. Schematic representation of the Dirac delta function, ( )
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A-2. Properties

1. Integral: One of the most important properties of the delta function has already been

mentioned: it integrates to 1.

2. Sifting property: When a delta function (x - x0) multiplies another function f(x), the

product must be zero everywhere except at the location of the infinite peak, x0. At that location,

the product is infinite like the delta function, but it might be a larger or smaller infinity,

depending on whether the value of f(x) at that point is larger or smaller than 1. In other words,

the area of the product function is not necessarily 1 anymore, it is modified by the value of f(x) at

the infinite peak. This is called the sifting property of the delta function:

( ) )

3. Symmetry:  A  few  other  properties  can  be  readily  seen  from  the  definition  of  the  delta

function:

a. (-x) = (x)

b. (x - x0) = (-x + x0)

4. Linear systems: If a physical system has linear responses and if its response to delta

functions  (impulses)  is  known,  then  in  theory  the  output  of  this  system can  be  determined  for

almost any input,  no  matter  how complex.  This  rather  amazing  property  of  linear  systems is  a

result of the following: almost any arbitrary function can be decomposed into (or “sampled by”)

a linear combination of delta functions, each weighted appropriately, and each of which produces

its own impulse response. Thus, by application of the superposition principle, the overall

response to the arbitrary input can be found by adding up all of the individual impulse responses.
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B. Heaviside step function

The Heaviside step function, H, also called the unit step function, is a discontinuous function

whose value is zero for negative argument and one for positive argument. The function is used in

the mathematics of control theory and signal processing to represent a signal that switches on at a

specified time and stays switched on indefinitely. It was named after the English polymath

Oliver Heaviside.

The Heaviside function is the integral of the Dirac delta function: H  = . This is sometimes

written as

( ) = ( )

B-1. Definition

Heaviside step function when defined as a piecewise constant function, is given by

( ) = 0,    < 0
1,     > 0

Figure A-2 presents schematic representation of Heaviside step function; figure A-3 presents

7 different types of the smooth approximations of the step function.

Fig. A-1. Schematic representation of the Heaviside step function, ( )
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Fig. A-3. Smooth approximations of the step function
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C. Phase portrait

A phase portrait is a geometric representation of the trajectories of a dynamical system in the

phase plane. Each set of initial conditions is representated by a different curve, or point. Phase

portraits are an invaluable tool in studying dynamical systems. They consist of a plot of typical

trajectories in the state space. This reveals information such as whether an attractor, a repellor or

limit cycle is present for the chosen parameter value. The concept of topological equivalence is

important in classifying the behavior of systems by specifying when two different phase portraits

represent the same qualitative dynamic behavior. A phase portrait graph of a dynamical system

depicts the system's trajectories and stable steady states and unstable steady states in a state

space. The axes are of state variables.

In the single differential equation case we are able to sketch the solution, y(t) in the y-t plane

and see actual solutions. However, this would somewhat difficult in some case when the

solutions are vectors. In this cases one may have the solutions to the system as points in the x1-x2

plane and plot these points. Equilibrium solution will correspond to the origin of x1-x2 plane and

the x1-x2 plane is called the phase plane.

To  sketch  a  solution  in  the  phase  plane  we  can  pick  values  of t and plug these into the

solution.  This gives us a point in the x1-x2 or phase plane that we can plot. Doing this for many

values  of  t  will  then  give  us  a  sketch  of  what  the  solution  will  be  doing  in  the  phase  plane.  A

sketch of a particular solution in the phase plane is called the trajectory of the solution. Once we

have the trajectory of a solution sketched we can then ask whether or not the solution will

approach the equilibrium solution as t increases. Usually phase portraits only include the

trajectories of the solutions and not any vectors. Fig. A-4 presents an exampleof potential energy

(top) and phase portrait (bottom) of a simple pendulum. Note that the x-axis, being angular,

wraps onto itself after every 2  radians.
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Fig. A4. Potential energy (top) and phase portrait (bottom) of a simple pendulum.



Vibration Reduction on Beams Subjected to Traveling Loads Using Linear and Nonlinear Dynamic Absorbers
Prepared by: Farhad Sheykh Samani    Supervisor: Prof. Francesco Pellicano

Shahid Bahonar University of Kerman, Iran  ,   University of Modena and Reggio Emilia, Italy

124

D. Poincare map

In mathematics, particularly in dynamical systems, a first recurrence map or Poincare map,

named  after  Henri  Poincare,  is  the  intersection  of  a  periodic  orbit  in  the  state  space  of  a

continuous dynamical system with a certain lower dimensional subspace, called the Poincare

section, transversal to the flow of the system. More precisely, one considers a periodic orbit with

initial conditions on the Poincare section and observes the point at which this orbits first returns

to  the  section,  thus  the  name  first  recurrence  map.  The  transversality  of  the  Poincare  section

basically means that periodic orbits starting on the subspace flow through it and not parallel to it.

A Poincare map can be interpreted as a discrete dynamical system with a state space that is

one dimension smaller than the original continuous dynamical system. Because it preserves

many properties of periodic and quasi periodic orbits of the original system and has a lower

dimensional state space it is often used for analyzing the original system. In practice this is not

always possible as there is no general method to construct a Poincare map.

A Poincare map differs from a recurrence plot in that space, not time, determines when to plot

a point. For instance, the locus of the moon when the earth is at perihelion is a recurrence plot;

the  locus  of  the  moon  when  it  passes  through  the  plane  perpendicular  to  the  earth's  orbit  and

passing  through  the  sun  and  the  earth  at  perihelion  is  a  Poincare  map.  It  was  used  by  Michel

Henon to study the motion of stars in a galaxy, because the path of a star projected onto a plane

looks like a tangled mess, while the Poincare map shows the structure more clearly.

Poincare maps are used to investigate periodic or quasi-periodic dynamical systems. Often

these systems exhibit a periodic cycle or a chaotic attractor. A Poincare section S is now assumed

to be a part of a plane, which is placed within the 3D phase space of the continuous dynamical

system such that either the periodic orbit or the chaotic attractor intersects the Poincare section.

The Poincare map is now defined as a discrete function P:S S, which associates consecutive

intersections of a trajectory of the 3D flow. Fig. A5 shows an illustration of Poincare map, in this

figure S is Poincare section, P shows the Poincare map which projects point x onto point P(x).
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Fig. A5. Poincare map illustration.
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E. Bifurcation diagram

In dynamical systems, a bifurcation diagram shows the possible long-term values

(equilibria/fixed points or periodic orbits) of a system as a function of a bifurcation parameter in

the system. It is usual to represent stable solutions with a solid line and unstable solutions with a

dotted line.

Fig. A6 presents a well-known bifurcation diagram of the Logistic map nonlinear difference

equation. The logistic map is a polynomial mapping of degree 2, often cited as an archetypal

example of how complex, chaotic behavior can arise from very simple nonlinear dynamical

equations; see Eq. (A-1). xn is a number between zero and one, and represents the population at

year n, and hence x0 represents the initial population (at year 0). r is a positive number, and

represents a combined rate for reproduction and starvation. Bifurcation parameter (control

parameter) is r.

= (1 ) (A-1)

Fig. A6. Bifurcation diagram of the logistic map.
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