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Introduction 
 
A gear is a toothed wheel designed to transmit torque to another gear or toothed component. 

This simple mechanism is well known since humankind started to deal with machineries. 

Early engineers developed wood gears with cylindrical pegs for cogs to multiply torque and to 

change speed properties of different shafts. Subsequently cogs were replaced by teeth and 

many archaeological discoveries had revealed that ancient civilizations (100 b.c.) used gears 

for a large variety of purposes: from a single spur gear pair in water mill, to differential gear 

systems in very complex astronomical calculating device (de Solla Price, 1974), such as the 

Antikythera mechanism, found near the greek island Crete (de Solla Price, 1959).  

 

Although gear systems have such a long history, the most important gear developments took 

place in the eighteenth century, during the industrial revolution; in this period progresses were 

made in the use of metallic alloys and in the development of sophisticated teeth shapes. 

Helical gears were found to be more silent than spur gears, even if a resultant thrust along the 

rotational axis and a greater sliding friction are produced, beveled and hypoid gears allowed 

to transmit power between intersecting or non intersecting non parallel axes, while worm 

gears could assure higher transmission ratios with comparable size. In the first part of 

nineteenth century, the sudden raise of automotive and aeronautical industries caused the 

development of particular gears applications; for example: four beveled gear differential 

systems used in car rear axle; planetary speed reducer systems used in helicopters; the first 

can transmit power to two axles spinning at different speeds, the latter allows a great speed 

reduction with small encumbrance and light weight. 

 

In view of the large employ of gears, the main difficulties in designing those systems were 

related to the strength resistance. Starting from the end of nineteenth century many engineers 

formulated analytical methods to evaluate the effect of loads on teeth stresses. Two main 

problems affect tooth resistance: contact pressure fatigue and bending fatigue. In 1892 Lewis 

(Lewis, 1892) applied a cantilever beam approach to model the behavior of a single tooth with 

an applied force. In 1937 Almen and Straub (Almen and Straub, 1937) proposed a method to 

evaluate bending strength. These approaches are still the basic fundamental method to 

calculate the stress at the root fillet according to standards ((AGMA 2001-B88, 1988), 

(AGMA 2101-C95, 1995) , (ISO 6336-1, 1996), (ISO 6336-2, 1996), (ISO 6336-3, 1996) and 

(ISO 6336-5, 1996)) even if many experimental coefficients have been added in order to take 



Introduction 

 
2 

into account: dynamic effects, the load cycle, lubrication and surface treatments. The basic 

analytical equations used to calculate the contact pressure were developed from Hertz’s 

theory  and adapted to tooth profile contact (Johnson, 1985). For many years these simple 

calculation were the only tools available to predict gears failure. Of course many tests were 

carried out to support calculations, correct approximations and improve models and 

knowledge. 

 

In the second half of nineteenth century, the increasing  performances of engines and 

materials involved a necessary improvement of gears calculation (Tuplin,1950) especially 

with respect to non conventional gear such as spiro-conical gears. The outstanding  works of 

the russian researcher Litvin ((Litvin,1989),(Litvin, 1994)) was able to cover the lack of 

understanding the geometry of all kind of gears geometry and gears drives. Litvin revised, 

expanded and unified in a unique compact analytical theory, called the theory of meshing, all 

the useful equations to design and generate gears starting from all type of manufacturing 

process. His work covered: spur involute gears, internal involute gears, noncircular gears, 

cycloidal gearing, involute helical gears with parallel axes, modified involute gears, involute 

helical gears with crossed axes, new version of Novikov-Wildhaber helical gears, face-gear 

drives, worm-gear drives with cylindrical worms, double-enveloping worm-gear drives, spiral 

bevel gears, hypoid gear drives, planetary gear trains, generation of helicoids, design of 

flyblades and generation of surfaces by CNC machines. For almost any of this sort of gears 

Litvin proposed calculations for relative velocity, centrodes, axodes, operating pitch surfaces, 

equations of gears curve/surfaces, curvatures of curves/surfaces, curvature relations, contact 

ellipse and computerized simulations for meshing and contact. 

 

The contribution given by academic and industrial engineers was gradually collected by 

important associations founded at the beginning of last century with the objectives of provide 

organization for the development of gears standards. For example, the American Gear 

Manufacturers Association (AGMA) was established in 1916 and its executive committee 

draw up a constitution, which stated that the main intentions of the association were: the 

advancement and improvement of that industry, the collection and dissemination of statistics 

and information of value to its members, the standardization of gear design and manufacture 

and application, and the promotion of a spirit of cooperation among its members for improved 

production and increased application of gears. In the same way many different associations 

appeared all over the world: the Verein Deutscher Ingenieure (VDI), established in Germany 
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in 1856, as well as the Deutsches Institut für Normung established in 1917, the Japanese Gear 

Manufacturer Association (JGMA) in Japan and the International Federation of the National 

Standardizing Associations (ISA) established in1926. ISA became the well known 

International Organization for Standardization (ISO) in 1946 which, nowadays, is a network 

of the national standards institutes (not only related to gears) of 156 countries, on the basis of 

one member per country, with a Central Secretariat in Geneva, Switzerland, that coordinates 

the system. 

 

This brief history shows how much interest have been placed in understanding gears and their 

applications since many centuries. The main reason of such interest is probably related to the 

fact that, the full comprehension of gears phenomena is still unknown. In effect the study of 

the gears involve many complex aspects. In addition many are the applications, since even a 

simple gear set up can have very different uses and functions, resulting in a completely 

different behavior. Furthermore, the increased speeds and torques applied in rotating 

machineries was partially balanced by the introduction of new technologies. In effect new 

materials and powerful lubricants can be helpful to reduce gear failures but not to avoid 

vibrations and noise. On the other hand, standards for automotive comfort require lower and 

lower levels for noise and vibrations, giving very few design suggestions. Nowadays four are 

the most important issues that must be taken into account by gear engineers: static strength 

resistance, dynamic behavior, weights-encumbrances and costs. 

The ultimate tools to design gears involved very powerful computer tools, which can be 

classified in two main categories: standard code software, which are able to verify if a gear 

system is designed according to standard, and finite elements analysis (FEA) and boundary 

elements analysis (BEA) packages, that can perform very accurate static strength analysis. 

Each of these pieces of software are very accurate but do not concentrate efforts on solving 

any vibration problem, despite gear dynamics has been modeled since 1950 ((Tuplin, 1950), 

(Johnson, 1958)). 

On the other hand, there is a vast amount of literature (see (Ozguven and Houser, 1988)) 

focused on gears dynamics,  and many mathematical models have been developed to control 

gears noise and stability but many of them remained tools to analyze existing systems and not 

to design them. If a simple spur gear pair is considered, the fundamental problem in gear 

design is to evaluate the best solution that can offer good dynamic performances, as well as a 

good static behavior.  In other words, it is an optimization problem, which involve both 

accurate static and dynamics modeling. Torque, speed and macro geometry influence the 
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behavior as well as the micro geometry, due to profile modification and manufacturing errors.  

Such detailed analysis must be able to evaluate the influence of all these parameters and be 

able to calculate their best setting. 

 

The main part of the present work deals with the modeling of a spur gear pair and try to give a 

unique approach to design gears, joining static and dynamics analyses. At first, a new 

methodology for the realization of an integrated CAD-FEM model for spur gears is proposed. 

This CAD-FEM tool provides exact gear geometry, relative positioning and the automatic 

FEM discretization for a wide family of spur gears. The code generates gear profiles based on 

parameters describing the cutting tool and particular attention is paid on simulating the 

enveloping process, when profile modifications exist. In order to provide a FE model, a 

parametric routine is used to generate automatically the mesh according to the teeth profiles 

geometry. This tool allows a fast and accurate static analysis of the gear and the calculation of 

the main source of dynamic excitation, such as the transmission error. The transmission error 

is strictly related to the variable global mesh stiffness, which depends on the gear position, 

materials and teeth geometry. A correct FEA can provide the value of the mesh stiffness, i.e. 

the transmission error. 

In the second part of the work a single degree of freedom oscillator with clearance type non-

linearity is considered. Such an oscillator represents the simplest model able to analyze a 

single teeth gear pair, neglecting bearings and shafts stiffness and multi mesh interactions. 

The model is also able to predict the effect of detailed profile modifications and 

manufacturing errors on the vibration of the gear pairs. In the case of a preexisting  design, a 

general optimization technique has been also implemented to refine gears geometry in order 

to improve the dynamic behavior. It must be noticed that comparison to literature and 

experiments are shown in order to validate some of results.  

 

The main attempt of the work is basically focused in showing and joining together the 

ultimate modeling techniques and supply useful tools, to predict what happen when two gears 

are meshing together at various load conditions. All the used mathematical concepts and 

modeling approaches are well known. The intention is to provide an original way of 

combining static and dynamic modeling together. In addition to the spur gear modeling, 

particular attention has been  paid to the static modeling of complex systems such as multi-

mesh system gear trains. The new FE software packages allow to reproduce very complicated 

systems and simulate stresses on gears when multiple load conditions occur. The modeling of 
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such systems requires the knowledge of gears geometry and gears kinematics. A unique 

modeling of a compound planetary gear system is presented as example of combined 

multibody / finite elements application. 
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Chapter 1  
 
 
 
In the following sections general analytical equations for spur gear profile are given. The 

approach focuses on the description of the gear involute geometry generated by a general rack 

tool profile. In this way the actual cutting process is simulated. The nomenclature and 

parameters definitions will follow ISO 701 and ISO 1122-1 ((ISO 701, 1998) (ISO 1122-1, 

1998)) and subscript 1 and 2 will be related respectively to the pinion and to the gear. 

 

 

1.1 Basic spur gears geometry: involute profile 
 
A spur gears pairs is the simplest existing gears set. It is constituted by two wheels, named 

pinion (driver wheel) and gear (driven wheel), with the purpose of transmit rotational motion 

between two parallel axis and, at the same time, multiplying either speed or torque. If Ω1 and 

Ω2 are respectively the rotational speed of the pinion and of the gear, the transmission ratio is 

defined has: 

2

1

τ Ω
=

Ω
 (1.1.1)

or:  

1

2

T
T

τ =  (1.1.2)

where T1 and T2 are torques acting on the pinion and on the gear.  

The two wheels are connected through a certain number of teeth, which are engaged each 

other. In almost all spur gears applications the tooth profile has a peculiar shape called 

involute, which is generated by means of the enveloping method. This method creates 

conjugated curves with the property to ensure a constant transmission ratio during motion. If 

the enveloping method is applied to gears, two tangent circles ζ1 and ζ2 and two straight lines 

ζe and ζr must be considered. ζ1 and ζ2 are primitive circles (also referred as generating pitch 

circles) relative to pinion and gear, ζe is a straight line called epicycle and ζr is a straight line 

rigidly connected with ζe as shown in Figure 1. The involute profiles σ1 and σ2 are the 

enveloped curves generated by ζr , while ζe is rolling without sliding respectively on ζ1 and ζ2. 

It must be noticed that the same profiles σ1 and σ2 can be obtained with the same procedure, 
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using ζb1, ζb2 and ζa  instead of ζ1, ζ2 and ζe.  ζa is called line of action and it is perpendicular to 

ζr, α is the pressure angle between ζe and ζa. The two circles ζb1 and ζb2 are called base circles, 

they are the fundamental geometric entities describing the two gears; in effect there is an 

unequivocal relationship between them and the teeth profiles σ1 and σ2. The base circles 

represent the evolutes to the teeth profiles, since they are locus of curvatures centers of  σ1 

and σ2. Litvin (Litvin, 1994) distinguished four different types of involute curves depending 

on the offset, along curve ζr , of the involute generating point M with respect to the line of 

action. A positive offset generate shortened involute curves, a negative offset generate 

extended involute curves, a null offset generate ordinary involute curves and an offset equal to 

base radius generate an Archimedes spiral. Figure 1 shows that σ1 and σ2 are ordinary involute 

curves because point M is at the intersection point between the line of action and ζr. 

 
Figure 1: Generation of involute profiles. 

 

As the base circles are tangent to the line of action the following relationships can be written: 

1 1 2 2sin( ); sin( )b br r r rα α= =  (1.1.3)

where rb1 and rb2 are base circles radii and r1 and r2 are primitive circle radii. 

In point C of Figure 1 (instantaneous centre of relative rotation between ζ1 and ζ2) the 

tangential speed v of the two wheels must be equal: 

1 2v v=  (1.1.4)

where: 
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1, 2i i iv r i= Ω =  (1.1.5)

Using equation (1.1.1), (1.1.3), (1.1.4) and (1.1.5) the transmission ratio can be calculated 

with the following relationships: 

11

2 2

b

b

rr
r r

τ = =  (1.1.6)

In order to give an analytical description of involute curve, the involute function must be 

defined. Let us consider a current point P on the tooth profile at radius rp as suggested in 

Figure 2.  

 
Figure 2: Involute function parameter. 

 

Point A is the tangent point of the line of action ζa to the base circle and point B is intersection 

point between the tooth profile and the base circle. ϕP is the involute polar angle relative to 

point P. ϕroll is called roll angle relative to point P, it is a useful variable to described the 

involute curve. 

Basic vector considerations yield to: 

OP OA AP= +  (1.1.7)

where: 

[ ]sin( ) cos( ) T
b roll rollOA r ϕ ϕ=  (1.1.8)

and 

[ ]cos( ) sin( ) T
roll rollAP AP ϕ ϕ= −  (1.1.9)

 

For the involute properties, AP  and AB  have the same length and the following equation 

can be written: 
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b rollAP AB r ϕ= =  (1.1.10)

Combining equation (1.1.7), (1.1.8), (1.1.9) and (1.1.10) a Cartesian representation of point P 

can be calculated: 

(sin( ) cos( ))
(cos( ) sin( ))

p b roll roll roll

p b roll roll roll

x r
y r

ϕ ϕ ϕ
ϕ ϕ ϕ

= −
= +

 (1.1.11)

 

Different expressions of involute curve can be found using variable parameter ϕα.; Figure 2 

yields: 

sin( )
cos( )
cos( )

cos( )

b P
p

b P
p

rx

ry

α

α

ϕ
ϕ
ϕ

ϕ

=

=
 (1.1.12)

and: 

tan( )bAP r αϕ=  (1.1.13)

 

Equation (1.1.10) and (1.1.13) yield: 

tan( ) tan( ) tan( ) ( )b roll b P Pr r invα α α α α αϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ= → + = → = − =  (1.1.14)

The function tan(ϕ)-ϕ  is called “involute function” and it is usually indicated as inv(ϕ). The 

representation of point P with respect to variable parameter ϕα becomes: 

sin( ( ))
cos( )

cos( ( ))
cos( )

b
p

b
p

r invx

r invy

α

α

α

α

ϕ
ϕ

ϕ
ϕ

=

=
 (1.1.15)

 

1.2 Spur gear design parameters 
 

1.2.1 Simple gear 
 
In the following a list of the main spur gear design parameters will be described in order to 

provide basic knowledge for the design process. 
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The main design parameter for a spur gear is called normal module m, it is defined as the 

quotient of the pitch at the reference diameter expressed in millimeters divided by π. Unless 

otherwise specified, the module refers to the generating pitch circle.  

2
2

r
rZm

Z

π

π
= =  (1.2.1)

Standard values for the module are available in ISO 54 (ISO 54, 1996). According to 

American nomenclature, values of module can be given in terms of diametral pitch, which is 

defined as the inverse of the module (AGMA 913-A98, 1998): 

1
dP

m
=  (1.2.2)

 

The tooth flank is completely bounded by two circles: the tip circle of radius ra at the tip and 

the root circle of radius rf at the root. The radial distance between the tip circle diameter da 

and the pitch diameter d is called addendum ha, while the radial distance between the root 

diameter df and the pitch diameter d is called dedendum hf. Standards values for addendum 

and dedendum are: 

1.25a fh m h m= =  (1.2.3)

When equations (1.2.3) are respected, the gear is said “normalized”, otherwise if addendum  

modifications are introduced, the gear is said “corrected”. The thickness of the tooth at the 

pitch circle is indicated with s. Figure 3 clarify the meaning of the previous parameters. 

 
Figure 3: Spur gear design parameter. 

 

Once the generating pitch radius is given, the thickness s at the pitch circle can easily be 

calculated by taking into account that the thickness of the tooth is equal to the vain: 
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2

2 2

r
mZs

π
π

= =  (1.2.4)

Subsequently the thickness sg at any radius rg can be calculated with the following simple 

relationship: 

1 1
, , , ,( tan ( )) ( tan ( ))

2 2
g

roll generic roll generic roll pitchcircle roll pitchcircle
g

s s
r r

ϕ ϕ ϕ ϕ− −+ − = + −  (1.2.5)

Where ϕroll,generic  is the roll angle relative to a current point on the tooth profile at radius rg 

and ϕroll,pitchcircle is the roll angle relative to a point on the tooth profile at radius r. Each roll 

angle can be calculated from the relative radius value according to the following equation: 

2

, 1g
roll generic

b

r
r

ϕ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (1.2.6)

 

Another important parameter is the circular pitch p as indicated in Figure 3. The value of p 

can be calculated with the following expression: 

2 rp
Z m
π π

= =  (1.2.7)

 

1.2.2 Spur gear pair 
 
Figure 4 shows the meshing of two spur gears: the two wheels profile mesh each other along 

the line of action (also called line of contact). Three different contact points are represented: 

point N1, intersection between the line of action and the gear tip circle, is the first point of 

contact; N2, intersection between the line of action and the pinion tip circle, is the last point of 

contact; point C, intersection between the line of action and the center distance line, is the 

pitch point. The center distance line connects the centers of the two wheels. The part  of the 

line of action between N1 and N2 is usually referred as segment of action (contact segment). 

During the relative rotation, the contact point moves along the line of action, from N1 to N2. 

At the same time pitch circles ζ1 and ζ2 roll without sliding on each other, describing the arcs 

of action 1 1A B  and 2 2A B . 

In order to assure a smooth continuous tooth action, as one pair of teeth ceases contact, a 

succeeding pair of teeth must already have to come into engagement. It is desired to have as 

much overlap as possible; a measure of this overlapping is the involute (or profile) contact 

ratio εα , it is the ratio of the length of the line of action with respect to the base pitch pb.  
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Figure 4: Contact point along line of action. 

 

The length of the contact segment can be calculated when base radii and tip circles radii are 

known: 

2 2 2 2
1 2 1 1 2 2 sin( )a b a bN N r r r r a α= − + − −  (1.2.8)

where a is the center distance length. 

The base pitch is defined as follows: 

1 2

1 2

2 2b b
b

r rp
Z Z
π π

= =  (1.2.9)

Obviously, the base pitch is the same for two mating gears.  

Equations (1.2.8) and (1.2.9) lead to: 
2 2 2 2
1 1 2 2

1

1

sin( )
2

a b a b

b

r r r r a
r

Z

α

α
ε π

− + − −
=  (1.2.10)

The involute contact ratio εα is also a useful indicator of the average number of meshing gear 

teeth during a mesh cycle. 

The choice of the involute tooth profile implies that the functionality of a spur gears pair is 

independent from the value of the center distance. Indeed according to equation (1.1.6) the 

transmission ratio does not depend from the value of the center distance a. In the previous 

sections, the value of the center distance a indicates the distance between the wheels centers, 

considering that the generating pitch circle are rolling without sliding on each other. 

Therefore, a new operating center distance a’ can be considered, i.e. the gears pair is mounted 

with a different center distance value. Two new pitch circles (operating pitch circles ζ’1 and 
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ζ’2) are rolling without sliding and a new value of the pressure angle can be calculated.  

According to Figure 5 the following relationship can be written: 

1 cos( )' cos
'

a
a

αα − ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (1.2.11)

 

1 2
1 2' ; '

cos( ') cos( ')
b br rr r
α α

= =  (1.2.12)

 

 
Figure 5: Generating and operating parameters.  

 

Another important parameter in a gears pair, is backlash, which is the difference between the 

width of a tooth space with respect to the thickness of the engaging tooth on pitch circles. 

Backlash can also be defined as the distance between mating tooth surfaces at the tightest 

point of mesh, in a direction normal to the tooth surface, when gears are mounted in their 

specified positions. The value of backlash along the operating line of contact be calculated as 

follow: 

2
1 2

2
1

1

2 '' '

'n b

rs s
Z

j r
r

π⎛ ⎞
− −⎜ ⎟

⎝ ⎠=  (1.2.13)

where s’
1 and s’

2 are the tooth thickness at the operating pitch circle calculated combining 

expressions (1.2.5) and (1.2.12). 
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1.2.3 Undercutting 
 
Figure 4 shows that the maximum length of the segment of contact is limited to the length of 

the common tangent ( 1 2 1 2N N K K< ). Any tooth addendum that extends beyond the tangent 

points (K1 and K2) interferes with the root fillet area of the mating tooth. This results in the 

typical undercutted tooth (Figure 6). 

 
Figure 6: Effect of undercut. 

 

 The undercut not only weakens the tooth with a wasp-like waist, but also removes some of 

the useful involute adjacent to the base circle. The literature (Dudley and Townsend, 1996) 

(Funaioli et al., 1987) proposed the condition for no undercutting in a standard spur gear by 

the expressions: 

2

2

max sin
2

2min
sin

a
mZaddendum h

tooth number Z

α

α

≤

≥
 (1.2.14)

 

1.2.4 Addendum modifications 
 
In order to explain the application of the involute method to gears manufacturing, a simple 

rack is considered as cutting tool. The rack is a degenerated gear, with straight line teeth 

profile, its primitive is a straight line, called pitch line. At the pitch line, the tooth and vain 

thicknesses are equal. Figure 7 shows a typical rack with normalized addendum (har) and 

dedendum (hfr) (see (ISO 53, 1998) for details). Comparing Figure 1 and Figure 7, the 

reference pitch line coincides with the epicycle ζe and the rack profile with the straight line ζr. 

A normalized rack cuts a normalized gear (see equations (1.2.3)) if the gear primitive circle 

rolls without sliding on the reference pitch line. In a pair of mating gears, if the cutter is 

inserted so that the gear pitch circle just touches the cutter reference pitch line (the cutter 
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tooth thickness is equal to the cutter gap width), this would have zero backlash for a given 

centre distance. Therefore it is usual to insert the cutter a little deeper to provide backlash. 

This means to shift up (negative addendum modification) the pitch line with respect to the 

reference pitch line during the cutting process. Figure 7 shows an example of positive 

addendum modification, the pitch line is shifted down from the reference pitch line. In both 

positive and negative addendum modification the gear pitch circle rolls without sliding on a 

new pitch line shifted from the reference line by an amount x·m called addendum modification 

(x is the addendum modification coefficient). Basically a positive addendum modification 

coefficient results in an increase of the gear tooth thickness, a negative addendum 

modification in a decrease of the gear tooth thickness. 

 
Figure 7: Generation of an involute gear through rack. 

Because of this property, the addendum modification is applied to reinforce the gear root, to 

avoid undercut in gear with small numbers of teeth and also to decrease the relative sliding 

speed and Hertzian stress of flanks (ISO 4467, 1982), (Henriot, 1987), (Ruggieri and 

Righettini, 2003). Addendum modification is therefore a simple means for improving the load 

capacity of gear pairs. 

The calculation of the addendum modification coefficient is strictly related to the gears 

application; the technical report ISO 4467 provides limits of addendum modifications and the 

distribution of addendum modifications between mating gears, depending on speed regime. 

The prescriptions have not any restrictive nature  and can be applied to gears defined by ISO 

53 (ISO 53, 1998). Approximated equation for addendum modification coefficient were 

proposed by Pedrero ((Pedrero and Artes, 1996), (Pedrero et al., 1996)) and Henriot (Henriot, 



Chapter 1 

 
16 

1987) for tooth gears with balanced specific sliding and by Arikan (Arikan, 1996) to 

investigate the effect of addendum modifications on dynamic loads. 

When addendum modifications are used the addendum and dedendum values change as 

follow: 

1.25a fh m xm h m xm= + = −  (1.2.15)

The thickness at the new generating pitch circle becomes: 

2 tan( )
2

ms xmπ α= +  (1.2.16)

 

1.2.5 Contact point along line of action 
 
In the previous paragraphs the concept of line of action has been introduced as the 

geometrical locus of the contact point during relative rotation. 

In spur gears, the contact point moves from the first point of contact N1 to the last point of 

contact N2 (see Figure 8).  

 
Figure 8: Points along the line of action. 

 
In the case of a contact ratio less than two, simple calculations allow to evaluate the radius rN1 

(points N1), with respect to the pinion, and the radius rN2 (point N2) with respect to the gear: 

 
2 2

1 1 2 2'sin( ') a bK N a r rα= − −  (1.2.17)

 
2 2

1 1 1 1N br K N r= −  (1.2.18)
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2 2

2 2 1 1'sin( ') a bK N a r rα= − −  (1.2.19)

 
2 2

2 2 2 2N br K N r= −  (1.2.20)

  

Points M1 and M2 represent points at which the number of teeth pairs in contact changes. In 

effect two pairs of teeth are in contact when the contact point move from N1 to M1. Only one 

pair is in contact from M1 to M2 and again two pair are in contact from M2 to N2.  

The same points can be located along the pinion and gear tooth profile as shown in Figure 9. 

 

Figure 9: Contact points along teeth profile. 

 

Since points M1 and M2 correspond to the largest and smaller radius at which a single tooth is 

in contact, they are generally referred as the highest point of single tooth contact (HPSTC) 

and lowest point of single tooth contact (LPSTC), depending on whether pinion or gear 

profile is chosen as reference.  L1 and L2 correspond to the minimum radius at which the 

involute exists (also referred as the start active profile point SAP). Note that in this work no 

difference exists between the end of active profile radius (EAP) and the tip radius. 

The following relationships allow to calculate the radii rM1 and rM2 with respect to both pinion 

and gear: 

1
1 1 2 2

1

2'sin ' brK M a K N
Z
πα= − −  (1.2.21)
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2 2
1 1 1 1LPSTC br K M r= +  (1.2.22)

 
2

2 2 1 1
2

2'sin ' brK M a K N
Z
πα= − −  (1.2.23)

 
2 2

2 2 2 2LPSTC br K M r= +  (1.2.24)

 

1
1 2 1 1

1

2 brK M K N
Z
π

= +  (1.2.25)

 
2 2

1 1 2 1HPSTC br K M r= +  (1.2.26)

 
2

2 1 2 2
2

2 brK M K N
Z
π

= +  (1.2.27)

 
2 2

2 2 1 2HPSTC br K M r= +  (1.2.28)

 

Equations (1.2.18), (1.2.20), (1.2.22), (1.2.24), (1.2.26) and (1.2.28) can be combined with 

equation (1.2.6) to obtained relative roll angles ϕroll,N1, ϕroll,N2 , ϕroll,LPSCT1 , ϕroll,LPSCT2 , 

ϕroll,HPSCT1 and ϕroll,HPSCT2.  

 

1.2.6 Profile modifications 
 
Since gears applications are generally related to motion transmission under load, all teeth can 

be subjected to deflection.  This can results in interference phenomena and the tooth tip can 

enter contact not in the pure involute position. Manufacturing errors can add to this effect so 

that it is necessary to relieve the tooth tip to ensure that the corner does not dig in. 

Correspondingly, at the end of the contact, the tooth tip is relieved to give a gradual removal 

of force (Smith, 1999). 

Both profile modifications can be achieved by removing material from the tooth according to 

six manufacturing parameters. At the tip: the “start roll angle at tip” ϕt,s and the “magnitude at 

tip” magt specify the point on the profile at which the relief starts and the amount of the 

material removed at the tip radius.  At the root, the “start roll angle at root” ϕr,s and the 

“magnitude at root” magr specify the point on the profile at which the relief starts and the 
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amount of the material removed at the radius corresponding to the “end roll angle at root” ϕr,e 

(see Figure 10). 

 
Figure 10: Tip and root relief. 

 
Typical manufacturing gears process, such as grinding, allows to control whether the variation 

of the removed material is linear or parabolic with respect to the roll angle. Note that the 

removal of material is measured along the direction normal to the profile. For this reason 

usual representations of the reliefs are given as deviation from the theoretical involute profile. 

Figure 11 shows an example with parabolic-type modifications. 

 
Figure 11: Tip and root relief: deviation from involute profile. 

 
Another design recommendation for spur gears is constituted by crowning. Crowning is a 

removal of material along the face width direction (Figure 12 a)) to accommodate 

misalignment. For example, if the shaft is flexible and slender and the gear is not centered 

between the bearings, the shaft will bend under load and the gear teeth will be at an angle 

compared to the unloaded case. Crowning compensates misalignment and centers the contact 

pattern increasing the contact area. Again, the removal of material is measured along the 
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direction to the normal profile. For this reason, usual representations of the crowning are 

given as deviation from the theoretical involute profile (Figure 12 b)). 

 
a) b) 
Figure 12: Crowning: a) effect of crowning on spur gear tooth; b) crowning parameters. 

 

Four parameters control a common lead crowning: the crowning magnitudes mag1 and mag2 

at the face width extremes and the face width coordinates zeta1 and zeta2 at which  the 

modification start. 

 

1.2.7 Mesh frequency 
The gear mesh frequency, also called "tooth mesh frequency", is the rate at which gear teeth 

mate together. It is equal to the number of teeth on the gear times the rotational frequency of 

the gear.  

 

1 1 2 2

60 60m
Z Zf Ω Ω

= =  (1.2.29)

 

where Ω1 and Ω2 are rotational speed expressed in RPM. 

From equation (1.2.29) the mesh period Tm and the mesh circular frequency ωm (in term of 

radians per seconds) can be evaluated: 

1
m

m

T
f

=  (1.2.30)

 

2
m

mT
πω =  (1.2.31)
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1.3 Meshing equations 
 
Let us consider the profile generation by means of an envelope of a rack profile ζr, see Figure 

13. Three references systems are introduced: 

-Sf (Ofxfyx) fixed reference; 

-S1 (O1x1y1) moving respect to Sf; 

-S2 (O2x2y2) moving respect to Sf; 

where ζr is fixed in S1 and σ2 is fixed in S2. 

θ is local variable that identify a point on the curve ζr and φ is local variable that identify a 

point on the curve σ2. The parameter φ depends on φ; P1 and P2 are the same point P 

represented in the reference systems S1 and S2. 

 
Figure 13: Reference systems. 

 
Let consider a regular plane curve ζr describing the rack tooth profile. The tooth profile (σ2) is 

described by the meshing equation (Litvin, 1994): 

1( , ) ( ) ( , ) 0tf n vθ φ θ θ φ= ⋅ =  (1.3.1)

 

such equation state that the sliding velocity tv , of S2 with respect to S1, has to be normal to 

the enveloping curve ζr. Moreover, one can express the normal vector to curve ζr as: 
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1 1 1 1( ) ( )n k O Pθ θ
θ
∂

= ×
∂

 (1.3.2)

Using homogenous coordinates, P1 on ζr is described by vector 11PO ; the following regularity 

conditions of the curve are imposed: 

1 1 1
1 1( ) , ( ) 0O PO P Cθ θ

θ
∂

∈ ≠
∂

 (1.3.3)

 

Assuming that S1 is fixed and S2 is moving with respect to S1, the sliding velocity of P in S1 

becomes: 

1 1 2 2 1 1 2 2 1 1 1( ) ( )d dv P O O O P O O O O O P
dt dtτ ω ω= + × = + × +  (1.3.4)

where ω  is the angular velocity vector of system S2. 

In order to describe the vector ( )1 1O P θ  in the reference S2 a transformation matrix M21 must 

be considered: 

2 2 21 1 1( , ) ( ) ( )O P M O Pθ φ φ θ= ⋅  (1.3.5)

M21 transforms reference system 1 to 2 by expressing the motion of S1 and S2 respect to Sf , 

using the Lagrangian parameter φ. Equation (1.3.5) represents a family of curves, which 

describe trajectories of the points of ζr while θ is varying during the motion with respect to S2. 

Equation (1.3.1) allows to reduce the family of curves to a unique curve σ2, which is the 

envelope of ζr. Equation (1.3.1) and (1.3.5) are sufficient to determinate the tooth profile 

curve σ2 as function of φ. According to Litvin, (Litvin et al., 2001), the following sufficient 

conditions for the existence and regularity of the curve must be respected: 

1. The family of curves σ2 must have C2 regularity for both θ and φ parameters: 
2

2 2 ( , ) , , ( , )O P C E R a bθ φ θ φ∈ ∈ ⊆ ∈  (1.3.6)

 

2. ζr must be regular: 

1 1 0( ) 0O P θ
θ
∂

≠
∂

 (1.3.7)

 

3. If a generic point (θ0,φ0) verifies equation (1.3.1), then it cannot be a singular point 

and must verify the following equation: 
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1 1 0 0 0( ) ( ) ( , ) 0O P t vτθ θ θ φ
θ θ
∂ ∂

+ ≠
∂ ∂

 (1.3.8)

where ( )tθ θ=  provides the contact point on ζr while θ is varying. 

 

1.4 Application of the analytical envelopping method 

1.4.1 Rack protuberance parameters 
 
Figure 14 shows the rack and protuberance parameters according to ISO 53 (ISO 53, 1998) 

and UNI 8862/2 (UNI 8862/2, 1998): 

 
Figure 14: Rack protuberance parameters. 

 
Both tooth profiles are constituted by three regular curves: a circular arc (1r) and two 

rectilinear segments (2r) and (3r). Such profile is defined by means of the following 

parametric equations, written in terms of the parameters θ1, θ2 and θ3: 

 

( ) ( )
( )

( )
( )

( )
( )

1
1

1 2 2 Pr 1 3 3

1 2 Pr 1 31
1

 cos  sin  sin
1 ; 2 ; 3

cos cossin

C t
T o T n

o n
C t

x x r x x x xr
r r r

y yy y r
r

θ
θ α θ α

θ α θ αθ

⎧ ⎛ ⎞= + ⎜ ⎟⎪ = + = +⎧ ⎧⎪ ⎝ ⎠ ⎪ ⎪
⎨ ⎨ ⎨

= =⎛ ⎞ ⎪ ⎪⎪ ⎩ ⎩= + ⎜ ⎟⎪ ⎝ ⎠⎩
 

(1.4.1) 

 

where: 
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( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )2 Pr Pr Pr 3

;
4

sin cos ;
cos

cos sin ;

ro
c t t n n t n c t

n

T c t o t t o o T n

m

Px hm r r tg r y hm v r

x x r hm v r r tg x vtg

πχ

χ α α α
α

α α α χ α

=

= − = − − + − = − + +

= = + − − + = − −

 (1.4.2)

are the coordinates of the points C, T2 and T3 indicated in Figure 14. The three curves, which 

constitute the whole rack profile, are defined in the following intervals: 

( )

( )

( )( )
( ) ( ) ( ) ( )

( )( )
( )

( )( )
( )

( )

1 11 12

3 2
2 21 22

2 21 22

3 31

1 ;
2

sin
;

cos sin cos
2

sin sin
;

cos cos

3

t pro t

t t pro T T
pro n

pro pro pro n

t t n t t n
pro n

n n

r r

hm v r r x x if
tg

hm v r r hm v r r
if

πθ θ θ α

α
θ θ θ α α

α α α α

α α
θ θ θ α α

α α

θ θ

⎡ ⎤∈ = − = −⎢ ⎥⎣ ⎦
⎧ ⎡ ⎤− − − + −⎪ ⎢ ⎥∈ = = ≠
⎪ ⎢ ⎥−⎪ ⎣ ⎦⎨
⎪ ⎡ ⎤− − − + − − − +

∈ = = =⎪ ⎢ ⎥
⎪ ⎢ ⎥⎣ ⎦⎩

∈ =
( ) ( ) ( ) ( )

( )( )
( ) ( )

3 2
32

3 31 32

1 ;
cos cos

sin
;

cos cos

T T
pro n

n npro n

t t n
pro n

n n

x x hm v if
tg tg

hm v r r hm v if

θ α α
α αα α

α
θ θ θ α α

α α

⎧ ⎡ ⎤− +⎪ ⎢ ⎥= ≠
−⎪ ⎢ ⎥⎪ ⎣ ⎦

⎨
⎡ ⎤− − − +⎪ +

∈ = = =⎢ ⎥⎪
⎢ ⎥⎪ ⎣ ⎦⎩  

(1.4.3)

 

1.4.2 Involute profile generated from a rectilinear segment and rack fillet 
 

For the rectilinear segments, using equation (1.4.1-r2) or equation (1.4.1-r3) inserting in 

(1.3.1) and solving with respect to θ  yields to: 

( ) ( )sin( )Tr xθ φ φ α= −  (1.4.4)

Substituting equation (1.4.4) into (1.3.5) one obtains: 

( ) cos( ) ( ) cos( )sin( )
( ) sin( ) ( ) cos( ) s( )

T

T

x r r x
y r r x co

φ φ φ α α φ
φ φ φ α α φ

= + − +⎧
⎨ = − + − +⎩

 (1.4.5)

for the rack tooth fillet using equation (1.4.1-r1) and (1.3.1) and solving with respect to 

θ yields to four solutions in the interval [ ; ]π π− : 

1,2,3,4 2 2
arccos

( )
c

c c

x r

y x r

φ
θ

φ

⎡ ⎤−
⎢ ⎥= ± ±
⎢ ⎥+ −⎣ ⎦

 (1.4.6)

according to equations (1.4.3) only the following solution is acceptable: 

2 2
arccos

( )
c

c c

x r

y x r

φ
θ

φ

⎡ ⎤−
⎢ ⎥= −
⎢ ⎥+ −⎣ ⎦

 (1.4.7)
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Substituting equation (1.4.7)  into (1.3.5) yields to: 

( ) cos( ) sin( )
( ) sin( ) sin( )

x A B
y B A

φ φ φ
φ φ φ

= +⎧
⎨ = +⎩

 (1.4.8)

with: 
22

2 2 2 2

( )
;

( ) ( )
cc

c t c t
c c c c

r x ryA r y r B r y r
y x r y x r

φ
φ φ

−
= + − = − −

+ − + −
 (1.4.9)

Equations (1.4.5) and (1.4.8) represent the curves which generate the tooth profile from the 

rack cutter envelope. 

 

1.4.3 Involute profile generated from a rack with semi topping 
 

In the present section a general description of the geometry of a complex rack profile is given 

when semi topping and protuberance are present. Particular attention is paid to parameters 

which define non standard tools.  Figure 15 a) shows the notation used: 

 

a)  b)  

c)  

Figure 15:  a) Geometrical parameters defining the profile of the rack; b) Point of 

intersection between different rack segments; c) Lagrange parameters and extreme values. 
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α*n is the pressure angle of the rack, α*pro is the pressure angle of the protuberance and α*sto is 

the pressure angle of semi-topping segment. Pro and Sto are respectively the protuberance 

and semi topping  magnitude. rp, rp1, rp2 and rq are fillet radii between generating segments. 

Introducing a reference frame O1x1y1 , where y1  corresponds to the axis of the rack tooth, and 

Lagrange parameters θ1, θ2, θ3, θ4 and θ5 according to figure 1 c), each straight segment of the 

rack profile can be analytically described as follow: 

( )
( )

= + ⋅ α
= ⋅ α

i Ti i i

i i i

x x Sin
y Cos

θ
θ

 (1.4.10)

where i can be 2, 3 and 4 according to Figure 15 b). 

With the same approach fillet arcs can be described with the following expression: 

( )
( )

j cj pj j pj

j cj pj j pj

x x r Cos r

y y r Sin r

θ

θ

= + ⋅

= + ⋅
 (1.4.11)

where j can be 1 and 5. Points Cj, and Ti are described by Figure 15 b). Note that radii rp1 and 

rp2 were neglected and substituted by a discontinuity at points P and Q. 

Figure 16 shows the enveloped curves along the gear profile in the general case of a cutting 

tool with both protuberance and semitopping . 

 
Figure 16: Different enveloped curves along gear profile. 

 

According to previous sections, equations (1.3.1) and (1.3.5) can be applied to equations 

(1.4.10) and (1.4.11) to generate correspondent profile curves of the gear tooth. The following 

analytical expressions can be calculated for the enveloped profile: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

i i Ti i i i

i Ti i i i

x rCos r x Cos Sin
y rSin r x Cos Cos

φ φ
φ

ι

ι ι

= + φ − α α +
= − φ + φ − α α +

 (1.4.12)
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( ) ( )
( ) ( )

= ⋅ + ⋅
= ⋅ + ⋅

j j j j j

j j j j j

x A Cos G Sin
y G Cos A Sin

φ φ
φ φ

 (1.4.13)

where i can be 2, 3 and 4 and j can be 1 and 5 according to Figure 16; R is the pitch radius of 

the gear; Aj and Gj can be define as follow: 

( )

( )
( )

2

22

2

22

(1)

(2)

cj
j cj pj

cj cj j

Cj j
j j Cj pj

Cj Cj j

y
A r y r

y x r

x r
G r x r

y x r

φ

φ
φ

φ

= ± −
+ −

−
= ± −

+ −

 (1.4.14)

Note that equations (1.4.14) have + for j equal to 1 and – for j equal to 5. 

It is clear from Figure 16 that each different parts of the profile can be described as an 

involute curve (equation (1.4.12)) or a trochoidal curve (equation (1.4.13)), and the existence 

or extension of these curves depends on the values of rack parameters. No analytical 

expression exists in literature in order to calculate the intersection points between these 

curves. Therefore point B, B1 and B2 are numerically calculated with a particular modified 

Newton-Rapson technique which assure convergence in a finite number of step. 

 

1.4.4 Limits Φ values 
 

Let us consider the simple case of a rack with protuberance described in Figure 14. The three 

curves r1, r2 and r3 generate three profiles t1, t2 and t3, see Figure 17. The boundaries of the 

curves r1, r2 and r3, in terms of their parameters θ1, θ2 and θ3 are reflected on the boundaries 

of the envelopes t1, t2 and t3, in terms of φ1, φ2 and φ3. 

 

 
Figure 17: Extremes values of θ and Φ. 

 
Using the mesh equation (1.4.4) and equation (1.4.7); rewritten in terms of φ , yields to: 
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( )s
;

C
T t

e t

x ctg
x c c r

r r

θθ
θ α

φ φ

⎛ ⎞
+ ⎜ ⎟+ ⎝ ⎠= =  

(1.4.15)

The first equation is referred to straight line segments r2 and r3 (see Figure 17) of the rack, 

while the second one is referred to the tooth fillet. Limits φ can be obtained substituting in 

(1.4.15) values for θ found in (1.4.3). 

 

1.4.5 Evaluation of intersection points: a numerical technique 
 
By analyzing Figure 17 one can argue that some parts of the envelope curves can be spurious, 

because of undercutting, i.e. the theoretical curves cannot be practically built. The actual 

intersection point A is given by: 

1 1 3 3

1 1 3 3

( ) ( )
( ) ( )

t t

t t

x x
y y

φ φ
φ φ

=⎧
⎨ =⎩

 (1.4.16)

in which xt1 and yt1 are the expressions (1.4.8) and xt3 and yt3 are the expressions (1.4.5) 

applied to segment r3 of the rack. Using the Newton technique equation (1.4.15) can be 

solved. However, this approach can give rise to numerical troubles. In order to circumvent 

such problems, equation (1.4.15) can be replaced by considering the distance between two 

envelope curves; by minimizing such distance one can obtain the intersection point. The 

Newton technique is used to solve this problem; for what concern first trial value, for the 

vector (0)φ , geometric considerations yield to select: 

32(0)

12

φ
φ

φ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (1.4.17)

 

1.4.6 Limits with undercutting 
 
High values of negative addendum modification give rise to undercutting at the tooth base, i.e. 

close to the intersection between t1 and t2, see Figure 17. Furthermore the rack can generate 

spurious envelope branches, if it is too close to the wheel. Singularity happens for: 

32 uφ φ<  (1.4.18)

The inequality means that the arc profile r3 begins to envelop spurious branch before reaching 

φu, at this point the singularity is produced. φu can be evaluated using equation (1.3.8); In the 

case of undercutting at least two intersections occur: Figure 18 shows the case of undercutting 

between curves t1 and t3. 



Chapter 1 

 
29 

 

 
Figure 18: Intersections between curves t1 and t3. 

 
Intersection B is known because it is generated by the limits of the two rack profiles r1 and r3, 

while the intersection A is evaluated with the previously mentioned numerical method, using 

φu instead of φ12 in equation (1.4.17). 

 

1.4.7 Generation of gear profiles 
The approach described in the previous paragraphs has been implemented in a 

Mathematica®4.1 (Wolfram, S., 1999) routine, which is able to represents the tooth geometry 

according to a particular rack profile.  

 
Figure 19: Gear profile. 

An example is shown in Figure 19. It is possible to locate the undercutting region on the tooth 

fillet produced by the protuberance of the rack (Figure 20). 
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Figure 20: Representation of the gear rack. 

 

Table 1 summarizes the parameter used in the simulation for both gear and rack.  

 

Number of Teeth 20 

Module [mm] 5 

Normal Pressure Angle [Deg] 20 

Face Width  [mm] 10 

Root gear diameter [mm] 97.5 

Outer gear diameter [mm] 110 

Rack tip radium rp [mm] 0.3 

αpro [Deg] 10 

Rack protuberance [mm] 0.1 

αsto [Deg] 50 

Rack semitopping [mm] 0.5 

rp [mm] 0.3 

rp1 [mm] 0.02 

rp2 [mm] 0.01 

rq [mm] 0.02 

Table 1: Rack-gear parameters. 
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Chapter 2  
 

In this chapter an automatic mesh procedure is described to generate nodes and elements for a 

spur gear pair for different relative position. Finally two case study are shown. 

 

2.1 Finite element method 
 

The main idea of finite elements is to break up a continuum into a discrete number of smaller 

elements modeled by a stiffness matrix (Strozzi, 1998). Each element has a certain number of 

nodes that have a certain number of degrees of freedom. The basic approach is to assume a 

shape function that describes how the nodal displacements are distributed throughout the 

element base. If ( )H x  is the shape function matrix and  δ  the element nodal displacement 

vector, the displacement anywhere in the element can be calculated as follow: 

( ) ( )u x H x δ= ⋅  (2.1.1)

The differential operator matrix B  can be used to convert the displacements vector within the 

element into the strains vector ε . 

Bu BHε δ= =  (2.1.2)

Using Hooke’s law it is possible to obtain stress from strain and therefore: 

E EBHσ ε σ δ= → =  (2.1.3)

From equations (2.1.2) and (2.1.3) the strain and stress vectors can be easily calculated once 

the element nodal displacement vector is known. Calculating the internal and external virtual 

works and applying the principle of virtual works, the nodal force vector f  can be expressed 

in terms of nodal displacements by means of a stiffness matrix K . 

f Kδ=  (2.1.4)

Where  
T

A

K B DBdA= ∫  (2.1.5)

and A indicates integration over the element area. 

f  is known from loading and constraining conditions; the inversion of the stiffness matrix 

yields to the displacement vector. 
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Using Finite Elements a very important role is played by the type of element used for the 

discretization. Many commercial codes (Marc®, ANsys®, NASTRAN®) offer different 

elements according to applications. In the present work two element types are used: 

quadrilateral plain strain element and quadrilateral plain stress element. 

The first one is a four-node, isoparametric, arbitrary quadrilateral, written for plane strain 

applications; the second one is a four-node, isoparametric, arbitrary quadrilateral written for 

plane stress applications. As these elements use bilinear interpolation functions, the strains 

tend to be constant throughout the element and this results in a poor representation of shear 

behavior. The stiffness of both elements is formed using four-point Gaussian integration  

(MSC.Marc, 2003).  

The use of plain strain or plane stress is related to the thickness of the structure. In gears 

analyses, sufficiently accurate results can be obtained using plain strain for a large range of 

applications. Plain stress is applied only in case of gears with a very thin face width.  

 

Figure 21: Nodes connectivity for quadrilateral plane strain and plane stress element. 

 
Figure 21 shows the nodes connectivity for both elements. Note that node numbering must be 

counterclockwise. 

 

2.2 Mesh generation 
 

Finite Elements commercial packages can offer interesting tools capable to simulate the static 

behavior of a spur gear pair once the shapes and lay out of gear systems are known. For this 

purpose Finite Elements Method (FEM) are intensively used with regards to bending fatigue, 

contact pressure and subsurface shear stress, even for very complex gear geometry such as 

hypoid and bevel gears ((Olakorede and Play, 1991), (Ramamurti et al., 1998), (Vilmos, 
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2000)). When the dynamic behavior is considered, FEM can be used to evaluate static 

transmission error (STE), source of parametric excitation into lumped models ((Ming-Haung 

and Ying-Chien, 1997), (Bonori et al., 2004)). Although the Finite Element Analysis is a very 

powerful tool, there are some disadvantages in analyzing gears systems; the need of studying 

different relative positions of the gear bodies, with different contact points, produces a waste 

of time in creating CAD and FEM models. Furthermore, each configuration requires a 

different meshing process, which can be very time consuming especially when accuracy is 

required. 

A CAD-FEM procedure capable to create, automatically, FEM models in the simple case of a 

spur gear pair is developed here. The tool provides exact gear geometry, relative positioning 

and the automatic mesh for a wide family of gears. Using equations developed in the previous 

chapter, a specific parametric routine developed to generate the complete mesh (nodes and 

elements) of a spur gear pair (Bertacchi, 2005). Loads, constraint and contact elements are 

also imposed automatically without any user involvement in the calculation process. 

Furthermore, all calculations can be performed for an arbitrary number of relative position 

within a mesh cycle. All single steps can be run continuously without any loss of time for the 

user. To validate the model and the tool some case study are presented and the results 

demonstrate how static analysis can be performed accurately in a very simple way. 

In the following paragraphs the basic idea of the automatic mesh procedure to generate nodes 

and elements is described. Figure 16 shows how each tooth profile can be divided into 

different parts according to whether the curve is involute, arc or throcoid. Therefore, different 

methods are proposed for the calculation of nodes coordinates for each segment along a gear 

tooth (Andrisano et al, 2005-a), (Andrisano et al., 2005-b). Once the coordinates are known a 

Nastran® script file can be generated in order to describe nodes and elements locations for a 

complete FE analysis.  

 

2.2.1 Involute profile 
 

A general mesh for a true involute profile is formulated considering Ie nodes along the 

involute profile and Iss nodes along the tooth thickness (see Figure 22). All nodes create 

equally spaced lines of mesh in both radial and circumferential directions. In order to generate 

a set of equally spaced nodes in the radial direction, the intersection of the involute curve with 

a generic circumference of radius RCi is calculated. 
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2 2 2
i i Cix y R+ =  (2.2.1)

Using equation (2.2.1) in equation (1.4.12) yields to:  

( ) ( )

2

1
ι

⎛ ⎞
= − α + −⎜ ⎟⎜ ⎟α⎝ ⎠

Ti Ci
i i

x RTan
R RCos

φ  (2.2.2)

Using equally spaced values of RCi, (initial and final values of the radius correspond to radii at 

point Bl and Bl+1) a set of different values of Φi (i = 1,..,Ie) can be evaluated. These values are 

substituted into equation (1.4.12) to obtain Cartesian coordinates of the nodes, for the involute 

profile. In order to generate nodes along circumferential direction at radius RCi , the relative 

value Φi is divided by the number of nodes Iss. Each series of values allows to calculate 

Cartesian coordinates for each circumferential line of mesh. Note that points Sl and Sl+1 are 

intersection between the tooth axis and the circumference with minimum and maximum 

radius. 

 
Figure 22: Mesh grid for involute profile. 

 

2.2.2 Trochoidal fillet 
 

Figure 23 shows the mesh grid used for the fillet area. A set of 2·Isr+1 nodes (Hi,1)is 

considered on the fillet surface from point A to point B. Cartesian coordinates of these points 

are obtained dividing the angular direction ζi,1 (from ζ 1,1 and ζ 2Isr+1,1 ) into 2·Isr equal parts 

and substituting the equivalent Φi angular values into equation (1.4.13). Furthermore, the fillet 

area is divided into two different regions: the right part, from point B to F, and the left part, 

from F to A. Both parts have Isr elements. Point E and point D are defined as intersections 

between the circumference of radius / 2ir fe feR R g= −  (Rfe and gfe are respectively radius and 

tooth thickness at point B) and the tooth axis and the straight line connecting the center of the 
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gear and point A. Δ1 and Δ2 are calculated dividing the length of segment EC and the length of 

arc DE by Isr. Cartesian coordinates of generic internal points Hi,j along a vertical line of the 

mesh can be calculated defining the slope γ of the line of mesh connecting point Hi,1 with 

point Hi,iss+1 and dividing the segment into Iss parts of length ai. 

 
Figure 23: Mesh grid for trochoidal fillet. 

 

A particular procedure is applied to improve computational effort. Polar coordinates of point 

Hi,j+1 can be simply evaluated with the following equation, once the polar coordinates of point 

Hi,j are know: 

( ) ( )
( ) ( )

, ,
, 1

, ,
+

⎛ ⎞−
⎜ ⎟=
⎜ ⎟−⎝ ⎠

i j i j i i
i j

i j i j i i

Sin a Cos
Arctg

Cos a Sin

ρ ζ γ
ζ

ρ ζ γ
 (2.2.3)

 

( ) ( )
( ) ( )
( ) ( )
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⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
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i j
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Cos a Sin
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ρ
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ρ ζ γ

 
(2.2.4)

 

2.2.3 Arc and rim 
 

Figure 24 a) shows the mesh grid used for the arc below the fillet region. Point N is the 

intersection between the circumference of radius / 2ir fe feR R g= −  and the straight line 

connecting the center of the gear and point U (point of separation between two contiguous 

teeth). Iss and Iscp are number of nodes on the radial and circumferential directions, and 

which define radius and angular position of each point respectively. 
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a) b) 

Figure 24: Mesh grid for: a) arcs; b) gear rim sector. 

 

A similar approach is used to generate the grid in the rim area, included between 

circumference of radius Rir and Rrim. Note that Rrim is the inner radius of the rim. Coordinates 

of each node are calculated considering Iccr and Iscp+Isr equally spaced nodes along radial 

and circumferential directions. Obviously the position of the nodes on the circumference at 

radius Rir depends upon previous grids for fillet and for root arc. 

 

2.2.4 Shaving 
 

The effect of the shaving process consists in the removal of a stock of material from the 

profile of the tooth, in order to improve the surfaces finishing (Dudley and Townsend, 1996). 

In many cases, this cutting process involves only the involute region. For this reason the 

cutting tool can produce a small step located in the fillet area, which can cause increase in the 

stress distribution when the load is applied. Figure 25 shows that a typical shape of the step 

can be mathematically described using two involute curves, one arc and one trochoidal curve. 

Using the meshing approach, described in the previous sections, a mesh grid for this geometry 

can be easily generated. 

 

 
Figure 25: Geometry of the profile after shaving process. 
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2.2.5 Coordinates rotation 
The previous sections show how the first tooth node coordinates are calculated once the total 

number of elements is provided. In order to calculate node coordinates of all teeth, a 

coordinate transformation is applied. If Z is the number of teeth in the gear, each different 

tooth can be generated by rotating the previous by the angle 2 / Zπ . If the Cartesian 

coordinates of a node of tooth i are known, the coordinates of  the relative node on tooth j can 

be calculated  as follow: 

2 2cos sin

2 2sin cos

j i i

j i i

j i

x x y
Z Z

y x y
Z Z

z z

π π

π π

⎧ ⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎪
⎪ ⎛ ⎞ ⎛ ⎞= +⎨ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎪
⎪ =
⎪
⎩

 (2.2.5)

Equation (2.2.5) assumes a counterclockwise rotation of 2 / Zπ  between tooth i and tooth j. 

If a node location is expressed in polar coordinates ri , αi and zi , the rotation of the node is 

calculated through a simple rotation of the polar angle:  

2
j i

j i

j i

r r

Z
z z

πα α

⎧ =
⎪
⎪ ⎛ ⎞= +⎨ ⎜ ⎟

⎝ ⎠⎪
⎪ =⎩

 (2.2.6)

 

2.2.6 Coordinates rotation for the gear pair 
 

In order to complete the previously mentioned procedure, all node coordinates must be 

subjected to particular rotation due to relative positioning between the pinion and the gear. 

A typical example is the analysis of the gear pair when the contact point between mating 

surface is the pitch point. The pitch point is the intersection between the center distance line 

and the line of contact, the coordinates of the first generated tooth are expressed with respect 

to a reference frame whose x-axis is along the tooth axis; then, an appropriate rotation for 

pinion and gear must be imposed to reach the proper mesh condition. The value of the rotation 

along z-axis is calculated according to the operating tooth thickness s’: 

1 2
,1 ,2

1 2

' ';
2 ' 2 'initial initial
s s
r r

ϑ ϑ= =  (2.2.7) 
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Note that a further rotation must be imposed to both gears, if more then one relative position 

must be analyzed. Let us consider, for example, the case of n different position in a mesh 

cycle. In terms of rotation, a mesh cycle is the defined as the rotation to be imposed to the 

gear system such that one tooth reaches the position of the previous one. In order to calculate 

the coordinates of all nodes at each of the n different positions, the following additional 

rotation must be included to the initial rotation described in equation (2.2.7): 

1

2 0... 1step step n
Z n

πϑ = = −  (2.2.8) 

step indicate each different relative positions. 

 

Equation (2.2.7) and (2.2.8) can be inserted into equation (2.2.5) or (2.2.6) in place of 2 / Zπ  

to calculate the nodes coordinates for whatever relative position between the gears. 

 

2.2.7 Mesh generation 
 
In order to create a Nastran® script file, which can be imported into Marc® environment, two 

Fortran® applications where developed. The first one is able to numerate nodes and arrange 

coordinates of each point according to the element description for a single gear, the second 

one extends the previous procedure at the gears pair with an optimization algorithm, which 

simplify the ordering and numbering process. The approach is developed for arbitrary 

quadrilateral isoparametric plain strain and plain stress elements as described in previous 

sections. 

 
Figure 26: Parts in tooth division. 
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Each single tooth is divided into four parts: left and right tooth side and the left and right rim 

side (see Figure 26). For each parts, two main directions are used to number the elements. 

Elelments of the left side parts are numbered according to the following directions: 

Tooth: from left to right along the tooth thickness and from the tip to the root along the gear 

profile 

Rim: from up to down in radial direction and from left to right in circumferential direction. 

The same approach is used for right sides except that directions go from right to left. 

Once the number of elements is known in all directions (this number is specified from the 

user) the element numbering algorithm for each part can be specified as follows: 

 

( )1 ; 1... , 1...elementn N j i i N j M= ⋅ − + = =  (2.2.9)

 

( ) ( )1 1 ; 1... , 1...left
upNode j N i i N j M= − ⋅ + + = =  (2.2.10)

 

( ) ( )1 1 1; 1... , 1...right
upNode j N i i N j M= − ⋅ + + + = =  (2.2.11)

 

( )1 ; 1... , 1...left
downNode j N i i N j M= ⋅ + + = =  (2.2.12)

 

( )1 1; 1... , 1...right
downNode j N i i N j M= ⋅ + + + = =  (2.2.13)

 

Where N and M are the number of elements in the first and second directions, and i and j are 

counter for first and second directions. 

For a current element (specified by i and j), equation (2.2.9) provides the element number 

while equations (2.2.10), (2.2.11), (2.2.12) and (2.2.13) provide the nodes numbers (see 

Figure 27).  

The mesh process of the parts follows the “left to right, up to down” rule. This means that the 

first part to be meshed is the tooth left part, the second one is the tooth right part, the third one 

the rim left part and the fourth one is the rim right part. It is important to underline that the 

meshing process of each part takes into account the number of nodes and elements of the 

previous part. For example the number of the first element of the tooth right part will be equal 

to the number of elements of the tooth left part in addition to one. A storing procedure takes 

also into account that equations (2.2.10), (2.2.11), (2.2.12) and (2.2.13) cannot provide the 

same number to the nodes at the border lines between each parts. In order to solve the 
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problem the identification number of nodes at the interface are store during the mesh of the 

first part. When the second part is meshed the value of the number of nodes at the interface 

are not calculated through the numbering algorithm but from the stored data. For example, at 

the interface between tooth left part and tooth right part (see Figure 28), nodes at the interface 

must have a unique identification number. The procedure stores the number of nodes at the 

interface during the mesh of tooth left part and uses the stored data in the numbering process 

of tooth right part. 

 
Figure 27: Element numbering. 

 

A similar situation occurs when two different teeth are joint together to create the full gear 

model. In this case another similar procedure stores the number of identification of each nodes 

at the interface between teeth and provide a unique identification number for border lines 

nodes.  

 
Figure 28: Nodes at border line between tooth left part and tooth right part. 
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This storing data technique is applied to merge each teeth in a counter clock wise direction 

until the full gear is completed. 

 

2.2.8 File Nastran 
The final step to generate a full FE model for a spur gear pair is writing all the mesh 

information into an appropriate Nastran script. Marc® user’s manual (MSC.Marc, 2003) 

(Mentat, 2003) indicates the script file must be structured as follows:   

 
BEGIN BULK  
Element connectivity  
Element nodes coordinates 
ENDDATA 
 

The instructions “BEGIN BULK” and “ENDDATA” are used to open and close the file. A 

short description of the “Element connectivity” and “Element nodes coordinates” is described 

in the following. 

 

Element connectivity 

This item consists in a list of all elements identification numbers followed by +1 or -1, 

depending on the element orientations (clock wise or counter clock wise), and the list of the 

relative nodes identification numbers. A specific format instruction must be used to describe 

the element connectivity according to the number of bit for each piece of information.  

The main difficulty is to order all numbers with the first digit on the left column margin. In 

effect, the number of digits of a number does not depend on the number itself. For example 

number 10 has 2 digit as well as 20. A simple algorithm  based on logarithm function has 

been used for this purpose. The number of digits for number n is calculated as follow: 

( )( )10int log 1digits n= +  (2.2.14)

where the Fortran function “int” returns the integer smaller number of a real number.   

The following lines show how the format instruction has been implemented in Fortran 

language. 

 
   96 format(TL1,'CQUAD4  1',7x,i<int(log10(NUMELEMENT/1.))+1>, 

     &<7-int(log10(NUMELEMENT/1.))>x,i<int(log10(NODOBASSSX/1.)+1)>, 
     &<7-int(log10(NODOBASSSX/1.))>x,i<int(log10(NODOBASSDX/1.)+1)>, 
     &<7-int(log10(NODOBASSDX/1.))>x,i<int(log10(NODOALTODX/1.)+1)>, 
     &<7-int(log10(NODOALTODX/1.))>x,i<int(log10(NODOALTOSX/1.)+1)>, 

     &<7-int(log10(NODOALTOSX/1.))>x) 
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Element nodes coordinates  

It consists in a list of all elements identification numbers followed by the relative nodes 

coordinates. Even for the node coordinates a particular format instruction must be used:   

 
   79 format(tl1,'GRID*   ',i<int(log10(NUMNODO/1.))+1>, 

     &<38-int(log10(NUMNODO/1.))-int(log10(ABS(int(X))+1.))>x, 
     &sp,F<INT(log10(ABS(int(X))+1.))+9>.6, 

     &<7-int(log10(ABS(INT(Y))+1.))>x, 
     &sp,F<INT(log10(ABS(INT(Y))+1.))+9>.6) 

   81 format(TL1,'*',<14-int(log10(ABS(int(Z))+1.))>x, 
     &sp,F<INT(log10(ABS(INT(Z))+1.))+9>.6) 

 
 

Note that after the word “GRID*” all coordinates are specified with a maximum of six 

decimal digits and that coordinate on z axis must be specify separately with a second format 

instruction. 

Both “Element connectivity” and  “Element nodes coordinates” procedure are repeated for 

each tooth and for both pinion and gear. 

 

2.2.9 Example of a complete spur gear pair 
Using the described technique a batch file can be used to run simultaneously all different 

script files to analyzed n different gear relative positions in a complete mesh cycle. 

A Fortran routine creates a .dbf file (file extension for Nastran®, Marc® (MSC.Marc, 2003)) 

to compute an arbitrary number of relative position, within a mesh cycle in a one step 

procedure. 

A simple case study (case study 1) is carried out to verify the FE approach. Table 2 shows the 

geometrical data for the spur gear pair: 

 
Data Pinion Gear 
Number of teeth 28 43 
Module [mm] 3 3 
Pressure angle [Deg] 20 20 
Base radius [mm] 39.467 60.610 
Theoretical pitch radius [mm] 42 64.5 
Thickness on theoretical pitch circle [mm] 6.1151 6.7128 
Addendum modification [mm] 1.927 2.748 
Face width [mm] 27 22.5 
Hob tip radius [mm] 0.9 0.9 
Outer diameter [mm] 93.1 139.7 
Root diameter [mm] 79.1 126.2 
Inner diameter [mm] 40 40 
Center distance [mm] 111 

Table 2: Geometrical data for the case study 1 (courtesy of CNH Case New Holland). 
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The first test is carried out to validate the geometry produced with the Fortran routine. The 

profile created is compared with the same geometry calculated with a commercial software. 

The comparison between coordinates of the two profiles show errors due to machine precision 

and the calculation of the maximum error grant a value below 109 mm.  Figure 29 shows 

congruity between two profiles for the test case described in Table 2. 

 
Figure 29: Comparison between generated profile for the pinion: developed technique (green 

line), commercial software (black line). 

 

 

A second test (case study 1b) is carried out to check the mesh generation process. Table 3 

shows a set of mesh parameters for the gear test study. 

 
Data Pinion Gear
Ie    18 19 
Isr    5 4 
Iss    4 4 
Iscp  1 1 
Iccr  8 12 

Table 3: Mesh parameters for case study 1b. 

 
 
Figure 30 shows the mesh generated with the previous mesh parameters for both pinion and 

gear. 
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a) b) 
Figure 30: Mesh generation: a)Pinion; b) Gear. 

 
 
Figure 31 and Figure 32 show the complete mesh of pinion and of the gear. 
 
 
 

 

 
Figure 31: Complete mesh of the pinion. 

 
 
 
 



Chapter 2 

 
45 

 

 
Figure 32: Complete mesh of the gear. 

 
The numbering of nodes and elements is also checked: Figure 33 and Figure 34 show how the 

numbering process of element and nodes follows the approach described in the previous 

paragraphs for both pinion and gear. 

 
 
 

Figure 33: Pinion numeration of node and elements: a) Detail of the tip of tooth 1;  

b) Detail of the left side fillet of tooth 1. 
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Figure 34: Gear numeration of node and elements: a) Detail of the tip of tooth 22;  

b) Detail of the right side fillet of tooth 22. 

 
Finally, another test (case study 1c) is carried out to verify the generation of the gears pair 

model when the contact between the wheel is at the pitch point. The mesh parameters are 

changed according to Table 4.  Figure 35 and Figure 36 show the complete mesh of the spur 

gear pair and a detail of the mesh at the contact point. 
Data Pinion Gear
Ie     10 10 
Isr    3 3 
Iss    3 3 
Iscp  3 3 
Iccr  3 3 

Table 4: Mesh parameters for the case study 1c. 

 
Figure 35: Complete mesh of the gears  pair model (case study 1c). 



Chapter 2 

 
47 

 

 
Figure 36: Complete gears pair model: detail of the mesh at the contact point. 

 

2.2.10 Evaluation of static transmission error for a spur gear pair 
 
In the present section the main objective of modeling a spur gears pair with Finite Element 

consists in the evaluation of the static transmission error. If gears are supposed rigid and with 

equispaced perfect conjugated teeth, they will transmit exactly uniform angular motion 

((Sloane 1941), (Buckingham 1949), (Faires and Keown, 1960), (Funaioli et al., 1987), 

(Mark,1989)). Real gears are subjected to elastic deformation and the surface profiles are not 

perfect involute; therefore the relative rotation of the wheels undergoes to a small unsteady 

component in the transmission of the angular motion. This component is usually referred as 

the transmission error. ((Walker, 1938), (Harris 1958), (Gregory et al., 1963-1964), 

(Mark,1989), (Maatar et al., 1995)). Therefore the transmission error is defined as the 

deviation of the position of the driven gear, for a given angular position of the driving gear, 

from the position that the driven gear would occupy if the gear were geometrically perfect 

(Munro, 1969-1970), (Gregory et al., 1963-1964), (Houser and Bolze, 1996). If no dynamics 

effects are included, such as damping and inertia, the transmission error is effected only by 

the static deflection of the teeth, the local deformation due to contact pressure and the 

deviation from the theoretical involute profile due to profile modifications and manufacturing 
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errors. In this case, the transmission error is always referred as “Static Transmission Error” 

(STE). On the other hand, when dynamic, effects are taken into account, for example when 

gears are rotating at a certain speed, the transmission error will be referred as “Dynamic 

Transmission Error” (DTE) (Bard, 1995). 

As the number of teeth pairs in contact within the mesh cycle changes, with the rotation of the 

gear, the mesh stiffness varies accordingly. For this reason, transmission error does not have a 

single value, but must be considered as a continuous variable during gears rotations. 

If all teeth are equal in both pinion and gear, the static transmission error is periodic with the 

period of mesh. Therefore the static transmission error can be easily calculated using a FE 

approach, which can be able to analyze n different relative position of the gears within a mesh 

cycle. 

 

The approach, described in the previous sections, allows to generate the FE model for each of 

the n relative positions in a very easy way. A test case (will be referred as case study 1d) is 

performed with the spur gear set described in Table 2 with the mesh parameters described in 

Table 5. 

For each relative positions, MSC-MARC® is used to perform the analysis. More than 2400 

quadrilateral elements are used for each gear. The driven wheel shaft is considered locked, i.e. 

the inner circumference of this wheel has zero rotation. This means that the driven wheel can 

be deformed around its shaft. The shaft elasticity is not considered here. The driver wheel can 

rotate around its shaft, i.e. its internal circumference has only rigid rotation. 

 
Data Pinion Gear
Ie     40 40 
Isr    3 3 
Iss    5 4 
Iscp  1 1 
Iccr  6 6 

Table 5: Mesh parameters for case study 1d. 

 

A torque of T = 470 Nm is applied to the driver wheel through distributed tangential force 

applied at all nodes at the inner circumference.  The wheel material is an alloy steel with a 

Young modulus of 2.06*1011 MPa and Poisson ratio of 0.3. 

Using a center distance of 111 mm the contact ratio εα becomes 1.2856, with period mesh 

angle equal to 12.857°. Fifteen, equally spaced, positions are analyzed in order to obtain the 

driver shaft rotation δ. The contact point between the gears at the first analyzed position is the 

pitch point. According to the contact ratio, from position 5 to 12 two pairs of teeth are in 
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contact, while for the remaining positions one pair of teeth is in contact. In addition to the FE 

model, contact element has been used in the contact regions. 

 
The stiffness k is evaluated for each position by using the following relationship which also 

transforms the torsion stiffness, T/δi , into the linear stiffness by dividing it by the square of 

the base circle radius of the pinion: 

2
1

1...15i
b i

Tk i
r δ

= =  (2.2.15)

The value of δi (usually radians) is calculated as the average circumferential translation of the 

nodes located at the inner circumference of the pinion at relative position i. The value of the 

static transmission error along the line of action (usually measured in μm) is calculated for 

each step with the following expression: 

1...15b iSTE r iδ= =  (2.2.16)

Marc is capable to analyze every single .bdf file and to reliably produce stress result for each 

single step. Figure 37 shows an example of Von Mises contour for case study 1d. 

 

 
Figure 37: Von Mises stresses contour for case study 1d. 

 

Values of the mesh stiffness are compared with those obtained with the commercial software 

Calyx®. Figure 38 shows comparisons of the mesh stiffness obtained with MSC Marc and 

Calyx, the behaviour is similar, even though a certain shift is present (the average is 
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different), this is due to the fact that in using MSC Marc, plain stress theory has been 

considered. Figure 39 shows comparisons of the mesh stiffness and the static transmission 

error, similar comments made for Figure 38 apply.  

 

 
Figure 38: Comparison of mesh stiffness: proposed approach (black); Calyx® (blue).  

 

 
Figure 39: Comparison of static transmission error:  proposed approach (black);  

Calyx® (blue).  

 
 
Table 6 shows the comparison of the mesh stiffness values plotted in Figure 38. The average 

percentage error is around 10%. 
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Proposed approach with MSC-Marc® Calyx® 
3.2189 108 2.8332 108 
3.1918 108 2.8407 108 
3.2085 108 2.8483 108 
3.1937 108 2.8078 108 
3.5941 108 3.1296 108 
3.9875 108 3.6280 108 
4.2103 108 3.8034 108 
4.2081 108 3.8161 108 
4.2140 108 3.8192 108 
4.2051 108 3.7931 108 
4.1195 108 3.7185 108 
3.6545 108 3.3298 108 
3.1200 108 2.8139 108 
3.1328 108 2.8576 108 
3.1963 108 2.8621 108 
3.2189 108 2.8332 108 

Table 6: Comparison between evaluated values on mesh stiffness [N/m]. 

 

In order to understand the behavior of the circumferential strain on the pinion rim, depending 

on the torque applied, one of the fifteen positions for the gear model, is studied with different 

torque values. Five case with respectively 235 Nm, 470 Nm, 705 Nm, 940 Nm and 1175 Nm 

are investigated using the same fem approach described previously. The average 

circumferential strain on the pinion rim is evaluated for each load case. Figure 40 shows an 

almost linear relationship between the two quantities which allows us to extends the approach 

used for the evaluation of the stiffness, in a contour of the torque value of 470 Nm.   

 
Figure 40: Linear behavior of the circumferential strain depending on torque. 

 
Note that the previous results are calculated when the contact point corresponds to the pitch 

point. A non-linear behavior can probably occur if the analysis is performed in some 
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particular point. For example close to the HPSTC, different torque values can involve 

different number of teeth pair in contact and consequently strong non-linearity behavior.   

 

2.3 Calyx® 
 

In the last few years the Finite Element analysis has become one of the useful tool in 

engineering design. The increasing power of tools such as faster and multi processor 

computers allows to model complex system in a reasonable amount of time. Despite these 

circumstances there are many example of mechanical applications which still are difficult to 

analyze. One of these application is multi-mesh gears system. For example in planetary gear 

system or in multi stage speed reducer, the large number of body, the complex kinematics and 

the effect of gear boxes, shafts and bearings, cannot be neglected when the behavior of the 

system is simulated. 

Calyx® is a computer program meant for the contact analysis of two and three dimensional 

multi-body system. The analytical technique used in the software combines a unique, semi-

analytical finite element approach with detailed contact modeling at the tooth mesh 

(Vijayakar, 1999) which is specifically developed to examine the mechanics of precisely 

machined, contacting elastic bodies such as gears. The semi-analytical finite element 

approach does not require a highly refined mesh at the contacting tooth surfaces which 

substantially reduces the computational time. With this approach Calyx® is capable to solve 

many technical difficulties typical of contact pair analysis in complex geared systems 

(Vijayakar, 2003-c): 

Size of the contact zone: The width of the contact zone in typical gearing applications is two 

orders of magnitude smaller than the dimensions of the gear teeth themselves. In order to 

model the contact conditions with sufficient accuracy, a general purpose non-linear finite 

element program needs to have a large number of nodes (a very fine mesh) inside the contact 

zone. To run such a contact model, the fine mesh in the contact zone has to transition into a 

much coarser mesh over the rest of the gear. The location of the contact zone, however, 

changes as the gears move. This means that either the gear finite element model should be re-

meshed for each time instant, or that the finite element mesh be highly refined over its entire 

surface area. Both these alternatives lead to unacceptably high computational costs. Calyx® 

approach has been to use the finite element models only to compute relative deformation and 

stresses for points that are away from the contact zones (Vijayakar, 1999). For points within 
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the contact zone, Calyx® uses semi-analytical techniques to compute the relative deformations 

and stresses. The “near field” semi-analytical solution and the “far field” finite element 

solutions are matched at a “matching surface”. Such a model is significantly difficult to 

program on a computer, but once implemented, can provide much better resolution without 

using a highly refined finite element mesh. 

Rigid body degrees of freedom in the system: In multi-mesh gear systems like planetary 

transmissions, there are many rigid body degrees of freedom or mechanisms that are 

constrained only by the contact conditions. This means that if a non-linear finite element code 

with gap elements is used, then the incremental stiffness matrices become singular. 

Some manipulations are commonly used, such as adding imaginary linear and torsional 

springs to make the system stiffness matrices non-singular. The spring stiffness can be made 

small, but the accuracy of results computed by such almost singular stiffness matrices is 

questionable. Calyx® approach has been to attach a reference frame to each individual 

component, and to carry out the finite element computations for each individual component 

separately in its own reference frame. As long as each finite element mesh is sufficiently well 

constrained to its reference frame, the stiffness matrices are well behaved (Parker et al, 2000-

b). The free mechanisms in the system can be modeled by allowing the reference frames to 

move freely. The contact solver used is based on the Revised Simplex solver (Vijayakar, 

1988). This solver is commonly used to solve quadratic programming problems. It can take 

into account any free mechanisms in the system while computing the contact loads. 

Large number of degrees of freedom: For a typical transmission system models, the total 

number of finite element degrees of freedom can be extremely large. This is so even with the 

finite element model refined only as much as is necessary for the far field solution. The total 

number of finite element degrees of freedom is approximately proportional to the total 

number of teeth. The amount of CPU time and memory needed to run a finite element 

analysis with such a large degree of freedom would make it impractical. Calyx® has resorted 

to using a hierarchical representation of the system, in which the system is built from many 

substructures, with each substructure in turn being composed of many substructures. The 

processes of stiffness decomposition and load vector back-substitution now become very 

complex, and involve multiple recursive traversals of the substructure hierarchy. However, it 

is now possible to keep CPU requirements within practical limits. 

Convergence of conditions at contact interfaces: Poor convergence of contact conditions at 

interfaces is one of the biggest problems caused by using a general non-linear solver to solve 

a problem with contact constraints. The constraints imposed by the contact between mating 
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surfaces are essentially linear inequality constraints. When a general purpose non-linear 

solver is used to solve this problem, convergence is not guaranteed, and if it does occur, it is 

usually very slow. The Revised Simplex solver provides a guarantee of convergence within a 

predetermined number of iterations. Furthermore, ill-posed contact problems can be detected 

even before the solution process is started (Vijayakar, 1988). The solver is specifically 

designed for the linear inequality type constraints found in contact problems. 

System Kinematics: The nominal position of each individual gear in the system changes with 

time. The nominal positions of the components are determined by the kinematics of the 

system. The kinematics of the system affects the nominal sliding velocities and inertial loads. 

It is very difficult to include this kinematic information into a finite element program. Calyx® 

has a special purpose programming language into the software in order to specify the details 

of the kinematics of each component in the system. Important details such as the kinematics 

effect of assembly errors, runout and misalignments are easy to apply using this approach. 

 

Calyx® communicates with the outside world through a programming language which brings 

flexibility at the expense of ease of use. It is controlled by the user through instructions in a 

special purpose programming language (Vijayakar, 2003-a).  

In the next paragraphs Calyx® language is used to perform a complex static analysis of a 

compound two stages planetary gear system using plain strain assumption. 

 

2.4 Compound planetary system 
 
In this section a description of the actual compound planetary system is given. The speed 

reducer is part of  an existing transmission system for aeronautical application. For this reason 

some data will be indicated using “XXXX”. The main purpose of next sections is describe the 

modeling technique and not data results.  

Note that in the next three sections all data are provided in English units. 

 

2.4.1 Example of compound planetary system 
 
The system is a compound planetary gear composed of two planetary stages connected with 

each other. These components are shown in the schematic of the full transmission as seen in 

Figure 41. In the first stage, the sun is one piece with the input shaft and meshes with four 

planets, while in the second stage the sun is connected with a spline to the carrier of the first 
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stage and meshes with six planets. All planets are supported by bearings that connect them to 

carriers. 

The carrier of the second stage is one piece with the output shaft. The ring gears are 

connected to each other by a thin ring and bolted to the gear box by multiple circumferential 

bolts through a radial flange extending from the ring gear. 

Two sets of bearings hold the complete structure. The first one, consisting of one spherical 

roller and a straight roller bearing, supports the input shaft. The second one, consisting of two 

tapered roller bearings, supports the output shaft. One spherical roller bearing connects the 

input shaft and the carrier of the first stage to support the carrier and to prevent misalignment. 

 

 
Figure 41: Schematic of the compound planetary system with bearings (red lines). 

 

The 2D model is developed with the following assumptions: 

1. All the gears are modeled with their effective tooth profiles as elastic bodies using 

typical finite element; 

2. The input shaft, output shaft and all carriers are considered as rigid bodies; 

3. The ring gears are considered as separated bodies; 

Particular attention is paid to the connections between bodies. The input shaft and sun of first 

stage are modeled as a single body constituted by the sun with added input shaft lumped mass 

and moment of inertia. The carrier of the first stage is rigidly connected to the sun of the 

second stage, forming a unique body that can deflect along the x and y directions (this two-

body assembly will be referred to using one of the component names). The output shaft and 

the carrier of stage two are a single rigid body, which will now be referred to as carrier of 

stage two. 

Two different sets of spherical roller bearings connect, respectively, the planets and carriers of 

stages one and two. Figure 41 shows that three different straight roller bearings are modeled 
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in order to support the structure between input shaft and ground, output shaft and ground, and 

carrier one and sun one. 

Rings one and two have rigid connections to ground, with constraints in all rigid body degrees 

of freedom. Each can deform elastically as the teeth, rim, and outer diameters are flexible. 

All planets are rigidly connected to bearings governing their rigid body degrees of freedom, 

but each can deform elastically as the inner diameters are flexible. 

Because of its large inertia compared to other components, the carrier of the second stage, 

which is splined to the main rotor, is constrained to have no deviation from its motion based 

on nominal gear kinematics. Consequently, the bearing that supports the second stage carrier / 

output shaft is neglected. 

The input torque is applied to the first stage sun, meaning the speed of the first stage sun can 

fluctuate about its nominal value in a dynamic simulation. The boundary condition at the 

output, as indicated above, is that the second stage carrier has no deviation from its nominal 

motion (meaning the output torque can vary about its nominal value in a dynamic simulation). 

 

2.4.2 Gear geometry 
 
The first stage is composed of an input shaft, sun, four planets, ring and a carrier. All planets 

are identical but not equally spaced. Table 7 shows angular positions and center distance of 

the planet with respect to the sun for stage one. Table 8 shows gear data for stage one. 

The second stage is composed of an input sun, six planets, ring, carrier and output shaft. All 

planets are identical but not equally spaced. Table 9 shows angular positions and center 

distance of the planet with respect to the sun for stage two. Table 10 shows gear data for stage 

two. 

Quadratic (parabolic) profile modifications are applied according to Table 11 and Table 12. 

These modifications are the same on both sides of a given tooth. The tip modification extends 

from the specified roll angle to the end of the tooth. The amount of modification is in the 

table. The root modification extends from the pitch point to the specified root roll angle with 

no modification at the pitch point and specified value as given at the ending root roll angle. 

 
Planet number 1 2 3 4 
Angular position [deg] XXXX XXXX XXXX XXXX 

Center distance sun-planets          XXXX in 
Table 7: Angular position and center distance planets first stage. 
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Data Sun Planet Ring 

Number of teeth 28 39 106 

Diametral pitch [1/in] 4.75 4.75 4.75 

Pressure angle [Deg] 25 25 25 

Base radius [in] 2.671222 3.720632 10.112487 

Theoretical pitch diameter [in] 5.894736 8.210526 22.31579 

Thickness [in] XXXX XXXX XXXX 
Face width [in] XXXX XXXX XXXX 

Hob tip radius [in] XXXX XXXX XXXX 
Fillet radius [in] XXXX XXXX XXXX 

Outer diameter [in] XXXX XXXX XXXX 
Root diameter [in] XXXX XXXX XXXX 
Inner diameter [in] XXXX XXXX XXXX 
Minor diameter [in] XXXX XXXX XXXX 

Young modulus [lbf/in2] 2.9 107 2.9 107 2.9 107 

Poisson ratio 0.29 0.29 0.29 

Density [lbf·s2/in4] 7.3533 10-4 7.3533 10-4 7.3533 10-4 

Table 8: Gear data stage one. 

 
Planet number 1 2 3 4 5 6 
Position [Deg] XXXX XXXX XXXX XXXX XXXX XXXX 

Center distance sun-planets [in]          XXXX 
Table 9: Angular position and center distance planets second stage. 

 
 

Data Sun Planet Ring 
Number of teeth 40 33 106 
Diametral pitch [1/in] 4.75 4.75 4.75 
Pressure angle [Deg] 25 25 25 
Base radius [in] 3.816033 3.148226 10.112487 
Theoretical pitch diameter [in] 8.421054 6.947368 22.31579 
Thickness [in] XXXX XXXX XXXX 
Face width [in] XXXX XXXX XXXX 
Hob tip radius [in] XXXX XXXX XXXX 
Fillet radius [in] XXXX XXXX XXXX 
Outer diameter [in] XXXX XXXX XXXX 
Root diameter [in] XXXX XXXX XXXX 
Inner diameter [in] XXXX XXXX XXXX 
Minor diameter [in] XXXX XXXX XXXX 
Young modulus [lbf/in2] 2.9 107 2.9 107 2.9 107 
Poisson ratio 0.29 0.29 0.29 
Density [lbf·s2/in4] 7.3533 10-4 7.3533 10-4 7.3533 10-4 

Table 10: Gear data stage two. 
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Quadratic (parabolic) profile modifications are applied according to Table 11 and Table 12. 

These modifications are the same on both sides of a given tooth. The tip modification extends 

from the specified roll angle to the end of the tooth. The amount of modification is in the 

table. The root modification extends from the pitch point to the specified root roll angle with 

no modification at the pitch point and specified value as given at the ending root roll angle. 

 
Stage 1 Tip Pitch Root 
Gear Roll Angle Magnitude [in] Roll Angle Magnitude [in] Roll Angle Magnitude [in] 
Pinion 33.44 -0.001 26.72 0 18.80 -0.00035 
Sun 37.06 -0.0008 26.72 0 16.61 -0.00055 
Ring 24.06 -0.0006 26.72 0 29.37 -0.00045 

Table 11: Profile modification on stage 1. 

 
Stage 2 Tip Pitch Root 
Gear Roll Angle Magnitude [in] Roll Angle Magnitude [in] Roll Angle Magnitude [in] 
Pinion 34.91 -0.0009 26.72 0 17.57 -0.00045 
Sun 33.59 -0.0008 26.72 0 19.49 -0.00055 
Ring 24.06 -0.0006 26.72 0 29.37 -0.00045 

Table 12: Profile modification on stage 2. 

 

All data in Table 7, Table 8, Table 9 and Table 10 are collected from nominal values from the 

drawings provided by Boeing. In case of multiple versions of a part in the drawings, the value 

was chosen from the most recent drawing. The hob tip radii for all the external gears (as 

required by Multyx) were evaluated by inverting the following formula (Dudley and 

Townsend, 1996): 

  

ρ fillet = rhob +
(b − rhob )2

dpitch

2
+ b − rhob

 (2.4.1)

where ρfillet is the minimum radius of curvature in the generated trochoidal fillet, rhob is the tip 

radius of the hob or of the grinding tool, dpitch is the pitch diameter and b is the dedendum 

value. Boeing provided values for the minimum value of ρfillet and the inverted formula from 

equation (2.4.1) becomes: 

  
rhob =

−2b2 − 2bρ fillet + dpitchρ fillet

−2b + dpitch + 2ρ fillet

 (2.4.2)
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2.4.3 Dimensional gear ring modeling 
 

 
a) 

 
b) 

Figure 42: Ring section and nomenclature. 

 
Figure 42 a) shows the actual layout of the ring cross-section. The connecting element and 

flanges change the thickness of the rings in a direction along the axis of rotation of the 

planetary system. Because the finite element model is two-dimensional, this must be reduced 

to an equivalent uniform ring gear radial thickness. 

A comprehensive 3D model provided simulated displacement values of two particular points 

along the outer diameter when two diametrically opposed forces are applied to both to rings. 

The load and deflection points are collocated. The evaluated deflection of the bottom gear at 

the load point for a 1.0 lbf load is XXXX in. while the deflection of the top gear at the load 

point for a 1.0 lbf load is XXXX in.  

To produce the same displacement for 1 lbf radial loads at the outer diameter in a physically 

justifiable 2-dimensional model, two finite element analysis using MARC were performed on 

the system shown in Figure 43. 

 
Figure 43: Finite element model to evaluate equivalent ring thickness. 
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The actual ring thickness was doubled and two different Young’s moduli E1 and E2 were used 

for the inner and outer parts of the ring. While E1 was equal to the nominal value of 2.9 107 

lbf/in2 to ensure the teeth are modeled with the correct value, E2 was changed until the 

displacement equaled the one provided by the comprehensive 3D model. The same procedure 

was applied to both rings. 

 
 Young Modulus E2 
Ring stage 1 1.08 1010 
Ring stage 2 0.826 1010 

Table 13: Evaluated Young modulus. 

 

Table 13 shows the calculated Young modulus E2 that yields the provided displacement 

values for both rings. The radial thickness of each of the two concentric rings is 0.455 in 

(Figure 43). Consequently doubling the actual thickness of both rings and using E2 for the 

outer part approximates the effective ring stiffness from the full system model. This process 

incorporates the effective stiffness of the ring and housing. The inertia is increased as well 

from the doubling of the thickness. This captures, in an ad hoc estimate, the additional inertia 

of the housing. 

 

2.4.4 Dimensional gear ring modeling: alternative approach 
 
In this section a different approach to calculate the effective outer diameter of the ring is 

presented (in contrast to method above using two rings of different moduli correlated with 

Penn State FE data). This method was developed when data presented in the previous 

correspondent paragraph were not available. 

 
a) 

 
b) 

Figure 44: Schematic of ring section. 
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Figure 44 a) shows a cross-section of the rings for the two stages while Figure 44 b) labels the 

dimensions used below. As previously mentioned the two rings are modeled separately 

neglecting the flanges and the connecting element. To accommodate this approximation the 

values of the outer diameters for the two parts was changed from nominal values. 

The connecting element was split into two parts (Figure 45 step 1) divided between the two 

rings. Each ring was remodeled as a unique rectangular section (Figure 45 step 2) with 

thickness hef1 and hef2. To calculate these values the bending stiffness for thin ring was taken 

into account.  

 

 
Figure 45: Step for the approximation of sections. 

 
Assuming both rings are thin (thickness/mean radius ratio <<1) and inextensible, the 

following formula gives the bending stiffness for a ring with rectangular section (Love, 1944): 

k =
Ebh3

12 1− ν 2( )Rm
3

 (2.4.3)

 

where b and h are width and thickness of the rectangular section of the ring, E and ν are 

Young modulus and Poisson ratio and Rm is the radius of the section from the ring center to 

the neutral axis. 

Every different section in step 1 can be seen as one ring with two different thickness h1or h2 

and hc. whose stiffness is given by: 
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ktot ,n =

Ebnhn
3

12 1− ν 2( )Rm,n
3

+
E

bc

2
hc

3

12 1− ν 2( )Rm,c
3

 (2.4.4)

where n can be 1 or 2 according to the part considered. 

The equivalent total stiffness of the approximate rectangular section of step 2 in Figure 45 are 

respectively kef1 and kef2 and are given by: 

  
kef ,n =

E bn +
bc

2
⎛

⎝⎜
⎞

⎠⎟
hef ,n

3

12 1− ν 2( )Rmef ,n
3

 (2.4.5)

where n can be 1 or 2. 

To evaluate the dimension of the approximated section of step 2 the following equation were 

imposed: 

,1 ,1 ,2 ,2;ef tot ef totk k k k= =  (2.4.6)

Equations (2.4.6) yield: 

  

bn +
bc

2
⎛

⎝⎜
⎞

⎠⎟
hef ,n

3

Rmef ,n
3 =

bnhn
3

Rm,n
3 +

bc

2
hc

3

Rm,c
3  (2.4.7)

where the unknowns are hef,n and Rmef,n. 

To evaluate the dimensions of each equivalent section another equation is needed. This 

equation is given by the following system: 

hef ,n = R out ,ef 2 − Rroot

Rmef ,n =
R out ,ef 2 + Rroot

2

⎧

⎨
⎪

⎩
⎪

→ Rmef ,n =
hef ,n + 2Rroot

2
 (2.4.8)

Finally the values of hef,1 and hef,2 can be evaluated inserting equation (2.4.8) into equation 

(2.4.7) as follows: 

  

bn +
bc

2
⎛

⎝⎜
⎞

⎠⎟
hef ,n

3

hef ,n + 2Rroot

2

⎛

⎝
⎜

⎞

⎠
⎟

3 =
bnhn

3

Rm,n
3 +

bc

2
hc

3

Rm,c
3  (2.4.9)

To accommodate the increasing of stiffness due to ring flanges an additional 5% of the 

effective stiffness, evaluated solving equation (2.4.9) with respect to hef,n, was added to the 

ring thickness for the both stages.  
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2.4.5 Lumped bodies 
 
 
The carriers and shafts are considered as rigid bodies. Values of mass and moment of inertia 

with respect to z axes were evaluated using CAD software that approximates the real 

geometries of the structures.  shows physical data computed from the CAD modelling. 

 
Structure Input shaft Carrier 1 Carrier 2 – Output shaft 
Young Modulus [lbf/in2] 2.9 107 2.97 107 2.9 107 
Poisson ratio 0.29 0.29 0.29 
Density [lbf·s2/in4] 7.3533 10-4 7.3533 10-4 7.3533 10-4 

Table 14: Physical data of lumped bodies. 

 

 

 

 

Input shaft 

 
a) 

b) 

Figure 46: CAD model of the input shaft. 

 
Figure 46 a) shows how the input shaft section was approximated while Figure 46 b) shows 

the three dimensional model used to evaluate mass and moment of inertia with respect to the z 

axis. 
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Carrier 1 

 

 
 

 
Figure 47: CAD model of the first stage carrier. 

Figure 47 shows how the first stage carrier sections were approximated and the three 

dimensional CAD model used to evaluate mass and moment of inertia with respect to the z 

axis. 

 

 

Carrier 2- Output shaft 

Figure 48 shows how the second stage carrier sections were approximated and the three 

dimensional CAD model used to evaluate the mass and moment of inertia with respect to the 

z axis. 
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Figure 48: CAD model of the second stage carrier. 

 
 

Structure Input shaft Carrier 1 Carrier 2 – Output shaft 
Mass [lbf·s2/in] 0.11708205 0.13491552 0.55940157 
Moment of inertia [lbf·s2·in] 2.65433221 4.27140614 10.57692223 

Table 15: Physical data of the 3D CAD modeled structures. 

 
Table 15 shows the obtained data for the 3D CAD modeled structures, while Table 16 shows 

a comparison between real masses and the same data evaluated by the 3D model and the finite 

element software. 

 
Real bodies Model 

Body Mass [lbf·s2/in] Body Mass [lbf·s2/in] Moment Inertia [lbf in2] 
Sun 1 In shaft 0.13463812 Sun 1 In shaft 0.1344618187 2.771325216 

Planet 1 0.0279633 Planet 1 0.02755318199 0.379638858 
Ring 1 0.09192841661 12.70521348 Ring 1 +Ring 2 0.27341896 
Ring 2 0.1958201203 27.06384516 

Carrier 1 0.11521916 
Sun 2 0.06110499 

Carrier 1 Sun 2 0.1835942725 5.00399012 

Planet 2 0.04453415 Planet 2 0.04396713697 0.428008048 
Carrier 2 N.A. Carrier 2 Out shaft 0.55940157 10.57692223 

Table 16: Comparison between data evaluated with 3D model and real data. 
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Gear 

The lumped mass and moment of inertia with respect to the z axis of all gears are evaluated 

automatically by Calyx® using the provided geometry and physical data. 

 

2.4.6 Mesh stiffness 
In order to have detailed information on the meshing stiffness all gear pairs are modeled 

separately and the linear stiffness (stiffness along the line of action) is evaluated. 30 positions 

along one mesh cycle are considered and an average value is calculated. 

Every gear pair is modeled using the same approach which consists in locking the driven 

wheel, i.e. the inner circumference of this wheel has zero rotation. The shaft elasticity is not 

considered here. The driver wheel can obviously rotate around its shaft, i.e. its internal 

circumference has only rigid rotation. The finite element program gives values of the 

circumferential rotation of the driver gear for every position along the mesh cycle and (2.4.10) 

is used to compute the linear mesh stiffness. 

 

2mesh
b

Tk
rδ

=  (2.4.10)

 

Where T is the torque, δ and rb are respectively the average circumferential rotation of the 

internal nodes and the base radius of the driver gear. 

In order to compute these mesh stiffness values, a 2D model is developed for every single 

gear pairs. For each model a particular calculation is used to model the face width of the gear 

pairs and the applied torques. For all pairs an average between the face width of the meshing 

gear (sun- planet and ring-planet for both stages) is considered and the applied torque is equal 

to the nominal torque divided by the number of the planets and divided by the average face 

width of the considered pairs. 

 

Figure 49 and Figure 50 show the linear mesh stiffness on a mesh cycle for all gear pairs: 

Table 17 shows average values of the linear mesh stiffness computed considering a complete 

mesh cycle. 
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Figure 49: Linear mesh stiffness for a) Sun – Planet of stage 1, b) Ring – Planet of stage 1. 

 
Figure 50: Linear mesh stiffness for a) Sun – Planet of stage 2, b) Ring – Planet of stage 2. 

 
 

Stage 1 Stage 2  
Sun-Planet Ring-Planet Sun-Planet Ring-Planet 

Linear mesh 3.1671e+006 4.0897e+006 3.3252e+006 2.0633e+006 
Table 17: Average values of the linear mesh stiffness. 

 

2.4.7 Kinematics 
Transmission ratio 

The transmission ratio for a planetary system with fixed ring is given by (Lynwander, P., 

1983): 

  
τ =

rpitch,sun + rpitch,ring

rpitch,sun

 (2.4.11)

where rpitch,sun and rpitch,ring are the cutting pitch diameter of the sun and of the ring. In the case 

of a compound system as in Figure 41, equation (2.4.11) has to be applied to each stage and 
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the total transmission ratio can be evaluated according to the following equation (Lynwander, 

P., 1983): 

τ tot = τ1τ 2  (2.4.12)

where τ1 and τ2 are the transmission ratio of respectively stage 1 and stage 2. The following 

equations show the relations between input and output torque and rotational speeds: 

1 2 1 2; ;output outputm
tot

input m input

T TT
T T T

τ τ τ τ τ= = = =  (2.4.13)

 

1 2 1 2; ;input inputm
tot

m output output

τ τ τ τ τ
Ω ΩΩ

= = = =
Ω Ω Ω

 (2.4.14)

The following figure shows the meaning of symbols used in the preceding equation, note that 

Tm and Ωm represent the torque and the speed at the intermediate step between the stages. 

 
Figure 51: Transmission ratio scheme. 

 

For the present system equations (2.4.11) and (2.4.12) give the following values: 

, 1 , 1
1

, 1

pitch sun pitch ring

pitch sun

r r
r

τ
+

=  

, 2 , 2
2

, 2

pitch sun pitch ring

pitch sun

r r
r

τ
+

=  

 
1 2totτ τ τ=  

 
The provided values for the output torque and speed are: 

  
Toutput = 1.2 ⋅106 in ⋅ lb   Ωoutput = 225RPM = 23.561945rad / s  

 
From these, 
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68697.5output
input

tot

T
T in lb

τ
= = ⋅  

3930.27 411.577 /input tot output RPM rad sτΩ = Ω = =  

2

328767.1564output
m

T
T in lb

τ
= = ⋅  

2 821.25 86.0011 /m output RPM rad sτΩ = Ω = =  
 

Mesh frequencies 

The mesh frequency for a planetary system with fixed ring is given by: 

ω =
ZS ZR

ZS + ZR

ΩS  (2.4.15)

where ZS and ZR are the number of teeth of sun and ring and ΩS is the speed of the sun. In the 

present system this equation can be applied to both stages using Ωinput and Ωm as values for ΩS 

to obtain 

,1 ,1
1

,1 ,1

9116.12 / 1450.87S R
input

S R

Z Z
rad s Hz

Z Z
ω = Ω = →

+
 (2.4.16)

 

,2 ,2
2

,2 ,2

2497.56 / 397.49S R
m

S R

Z Z
rad s Hz

Z Z
ω = Ω = →

+
 (2.4.17)

In this case subscripts 1 and 2 indicate the corresponding stage. 

 

2.4.8 Bearing stiffness 
 
All bearing were modeled as stiffness matrix and Table 18 summarizes the stiffness values 

used in the finite element model: 

 
Bearing Along y [lbf/in] Along z [lbf/in] 
Input shaft XXXX XXXX 
Planet Stage 1 XXXX XXXX 
Sun 1 – Carrier 1 XXXX XXXX 
Planet Stage 2 XXXX XXXX 
Output rotor shaft XXXX XXXX 

Table 18: Bearing stiffness values for the finite element model. 
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2.4.9 Bearing stiffness: alternative approach 
 
In this section a different approach to calculate the bearings stiffness is presented. It is based 

on formulae given by Gargiulo (Gargiulo, 1980). This method can be used if bearing data on 

connections between planets and carriers are not available. 

In order to evaluate the stiffness of bearings that connect planets to carriers, the load acting on 

each bearing must be calculated. First, four simplifying assumptions are made: 1) assume that 

the system is at a steady state speed (not accelerating); 2) assume that all planets are equally 

spaced; 3) assume that all planets share load equally; and 4) neglect friction. 

 
Figure 52: Free body diagram of the sun. 

Figure 52 shows the free body diagram of the sun of a general planetary system with fixed 

ring and n planets where Fx p,s and Fy p,s designate the x and y components of mesh force Fp,s 

acting from planet to sun, T designates torque on the sun, Rbs designates base radius of the sun 

and α designates sun-planet pressure angle. Considering rotational equilibrium yields: 

 

  
T = n Fp,s Rbase( )→ Fp,s =

T
nRbase

 (2.4.18)

 
Figure 53 shows the free body diagram of the planet where β designates ring-planet pressure 

angle, Fs,p and Fr,p are the mesh forces acting on the planet from respectively the sun and the 

ring, Fx B and Fy B designate the x and y components of the reaction of the bearing FB,and FC is 

the centrifugal force due to the rotation of the bearing on z axes of the planetary system with 

the carrier angular velocity ΩC.  
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Figure 53: Free body diagram of the planet. 

 
The translation and rotational equilibrium can be obtained applying Newton's 2nd law. 

 

, ,
) 0

s p r p Bx x xx F F F+ + =  (2.4.19)

 

, ,
) 0

s p r p By y y Cy F F F F− + + =  (2.4.20)

 

, , , ,. 0p r p bp s p bp r p s pRot O F R F R F F− = → =  (2.4.21)

 

Combining these equations with equation (2.4.18) and the fact that: 

( ) ( )
( ) ( )

, ,

, ,

, ,

, ,

2

cos ; sin ;

cos ; sin ;
s p s p

r p r p

x s p y s p

x r p y r p

C p C

F F F F

F F F F

F m I

α α

β β

= =

= =

= Ω

 (2.4.22)

where mp mass of the planet and I planet center distance, yields: 

( ) ( )( ) ( ) ( )( ) 2cos cos ; sin sin
B Bx y p C

bs bs

T TF F m I
nR nR

α β β α= − + = + − Ω  (2.4.23)

 

The reaction force of the bearing is: 

  
FB = FxB

2 + FyB

2 = −
T

nRbs

cos α( )+ cos β( )( )⎛

⎝⎜
⎞

⎠⎟

2

+
T

nRbs

sin β( )+ sin α( )( )− mpΩC
2 I

⎛

⎝⎜
⎞

⎠⎟

2

 (2.4.24)

 

The magnitude of this force equals the force acting on the bearing by the planet. 
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Planet bearing FB [lb] 
Stage 1 575167.54 
Stage 2 384068.4 

Table 19: Evaluated forces acting on planet bearings. 

 
Table 19 shows values of evaluated forces acting on planet bearing for the two stages. 

A simple way to estimate stiffness of the planet bearings is by using the following formula 

that is valid for spherical roller bearings (Gargiulo, 1980): 

  
kbearing = 0.0921⋅106 FBl2nrol

3 cos7 ϕ( )4  (2.4.25)

where l is the roller effective length, nrol is the number of the rolling elements and φ is the 

contact angle. 

  
Figure 54: Bearing parameters. 

 

Only half of the bearing force FB from equation (2.4.24) is used in equation (2.4.25) to take 

into account the presence in all planet bearing of the double row of spherical rollers, as shown 

in Figure 54. The value of stiffness is then multiplied by two to obtain the total stiffness of the 

bearing. 

 

2.5 Modeling of compound planetary system 
 
In the past many authors simulated static and dynamic behaviors of planetary systems using 

finite elements. Drago and Margasahayam (1987-a) performed a stress analysis of planetary 

gears with integral bearings as well as a full planetary system for aeronautical applications 

(Drago and Margasahayam, 1987-b). Valco (1992) calculated stresses, strains and 
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deformations in the gears for a planetary system using a non-linear finite element model under 

static load conditions. Better results were achieved in 2003 by Vijayakar (Vijayakar, 2003-b) 

who was able to perform a very accurate analysis for an helicopter planetary stage. The 

application of his unique, semi-analytical finite element approach (Vijayakar, 1999) gave 

stress at the fillet region almost identical to the actual stress recorded by Krantz (Krantz, 

1992) in an actual planetary system. The same semi-analytical finite element technique was 

also employed by Parker et al. (2000-b) to analyze the dynamic behavior of a simple spur 

gears pair and the dynamic response of a planetary gear system (Parker et al., 2000-a). In 

Parker et al. (2000-b) the effect of non-linearity due to loss of contact between gears was 

taken into account and good agreements between simulation and experimental data were 

shown. Parker et al. (2000-a) showed excellent agreement with analytical models (Lin and 

Parker, 1999-a) (Lin and Parker, 1999-b) for what concern the evaluation of the natural 

frequencies and vibration modes. Good agreements were found also for the expected 

excitation of resonance, at speeds where the mesh frequency or its harmonics coincide with a 

natural frequency. In the next sections the same approach used by Vijayakar  (Vijayakar, 

2003-b) is applied in order to model the compound planetary system described previously. 

For this purpose a Calyx® model is created and deeply discussed to show the modeling 

technique. 

2.5.1 Calyx model 
The model consists in twenty files built up using Calyx® language (Vijayakar, 2003-a). Table 

20 summarizes and lists all files and their contents: 
File name Contents 
Compound.cfg System geometry and kinematics 
Compoundan.cmd Set up of the analysis and post processing of data 
Sun1.msh Mesh of 1 tooth of  the 1st stage sun 
Pinion1.msh Mesh of 1 tooth of the 1st stage planet 
Ring1.msh Mesh of 1 tooth of the 1st stage ring 
Ringrim1.msh Mesh of 1 segment of the ring rim of the 1st stage 
Carrierlump1.msh Inertia and mass of the added lumped mass for the Carrier of 1st stage 
Sun2.msh Mesh of 1 tooth of  the 2nd stage sun 
Pinion2.msh Mesh of 1 tooth of the 2nd stage planet 
Ring2.msh Mesh of 1 tooth of the 2nd stage ring 
Ringrim2.msh Mesh of 1 segment of the ring rim of the 2nd stage 
Carrierlump2.msh Inertia and mass of the added lumped mass for the Carrier of 2nd stage 
Sun1.brg Stiffness matrix for Ground-Sun bearing of 1st stage 
Pinion1.brg Stiffness matrix for Planets-Carrier bearings of 1st stage 
Carrier1Sun1.brg Stiffness matrix for Sun-Carrier bearing of 1st stage 
Pinion2.brg Stiffness matrix for Planets-Carrier bearings of 2nd stage 
Carrier2.brg Stiffness matrix for Ground-Carrier bearing of 2nd stage 

Table 20: Files index for the compound model. 
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Two basic files are called Compound.cfg  and Compoundan.cmd. The first file is the pre-

processing file, it contains the description of the model with both geometry and kinematics. 

As Calyx® is a multibody-FEM tools, a certain amount of reference systems and bodies must 

be created according to the system to be modeled. Kinematics relationship must be described 

to impose a consistent kinematics to the system. Phasing relationships between bodies must 

be clarified in order to join and mesh bodies properly. All these information are inserted in the 

Compound.cfg file by means of variable, function, equations and relationships. Except few 

data (independent parameters) all information will be automatically calculated once this file is 

compiled. 

The second file Compoundan.cmd contains all the set up and post processing information for 

the analysis. Value of torque, speed, and the data to be stored and calculated during the 

analysis are specified in this file. 

The mesh file (with “.msh” extension) contains the gear mesh property of the relative gear. 

For example Sun1.msh contains mesh data on the first stage sun. The mesh file is structured 

in different records, which contains information on nodal coordinates, elements types and 

enumeration, material properties, constraints and contact element. It must be underlined that 

each “.msh” file includes only the mesh of a single tooth of the relative wheel. Indeed Calyx® 

will create the complete gear mesh by taking advantage of repetitive symmetry and use 

recursive sub-structuring. This approach allows to improve the computational effort for the 

decomposition of the stiffness matrix during calculation. The number of recursive steps will 

decrease from Z3 to log2(Z), where Z is the number of teeth in the gear (Vijayakar, 2003-a). 

The sub structuring technique considers each single tooth as a sub structure that must be 

joined with the others to create the complete gear structure. 

The bearing “.brg” files are text files containing the stiffness and damping matrices, which 

describe the spring type connection between two bodies.  

 
Figure 55: Example of “.brg files” with the stiffness (red) and damping (blue) matrices. 
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Calyx® creates bodies by assigning a reference system to a structure and imposing to the body 

its own kinematics. Of course each body must be constrained by means of bearing, and 

contact constraints. 

In order to explain the complexity of the model a simple description of the content of the most 

important files listed in Table 20 will be discussed. Each code line will be presented with the 

relative comment and the progression will facilitate the comprehension of the code. 

COMPOUND.CFG 

The first step in creating the model is to specify the basic data information of the system. The 

basic data are the essential and independent values that Calyx® cannot evaluate from other 

specified parameters. Typical example are center distance, number of teeth, number of gears, 

etc. 
// System parameters STAGE 1: 
 

// System parameters STAGE 2: 
 

Cent_Dist_Planet_Sun_1 :=XXXX; 
Planet_Number_of_Teeth_1 := XXXX; 
Sun_Number_of_Teeth_1    := XXXX; 
Ring_Number_of_Teeth_1   := XXXX; 
Number_of_Planets_1:= XXXX; 
 
//Calculated parameters: 
dTheta_Sun_1   :=    2*Pi/Sun_Number_of_Teeth_1; 
dTheta_Ring_1  :=  -2*Pi/Ring_Number_of_Teeth_1; 
dTheta_Planet_1:= 2*Pi/Planet_Number_of_Teeth_1; 
 
// Phasing position between planets: 
dTheta_Pia2_1   :=XXXX; 
dTheta_Pia3_1   :=XXXX; 
dTheta_Pia4_1   :=XXXX;  
 
 
 
 
Ring_Outer_Radius_1     := XXXX; 
Interface_Radius_Ring_1 := XXXX; 
Planet_Inner_Radius_1   := XXXX; 
 
 
//Tooth geometry dependent initial rotation value: 
Generating_Sun_Tooth_Thickness_1   := XXXX; 
Generating_Planet_Tooth_Thickness_1:= XXXX; 
Generating_Ring_Tooth_Thickness_1  := XXXX; 
 
Sun_Generating_Diametral_Pitch_1   := XXXX; 
Planet_Generating_Diametral_Pitch_1:= XXXX; 
Ring_Generating_Diametral_Pitch_1  := XXXX; 
 
Generating_Sun_Pressure_Angle_1   := XXXX; 
Generating_Planet_Pressure_Angle_1:= XXXX; 
Generating_Ring_Pressure_Angle_1  := XXXX; 
 

Cent_Dist_Planet_Sun_2 := XXXX; 
Planet_Number_of_Teeth_2 := XXXX; 
Sun_Number_of_Teeth_2    := XXXX; 
Ring_Number_of_Teeth_2   := XXXX; 
Number_of_Planets_2:= XXXX; 
 
//Calculated Parameters: 
dTheta_Sun_2   :=    2*Pi/Sun_Number_of_Teeth_2; 
dTheta_Ring_2  :=  -2*Pi/Ring_Number_of_Teeth_2; 
dTheta_Planet_2:= 2*Pi/Planet_Number_of_Teeth_2; 
 
 
// Phasing position between planets: 
dTheta_Pia2_2   := XXXX; 
dTheta_Pia3_2   := XXXX; 
dTheta_Pia4_2   := XXXX; 
dTheta_Pia5_2   := XXXX; 
dTheta_Pia6_2   := XXXX; 
 
Ring_Outer_Radius_2     := XXXX; 
Interface_Radius_Ring_2 := XXXX; 
Planet_Inner_Radius_2   := XXXX; 
 
//Tooth geometry dependent initial rotation value: 
Generating_Sun_Tooth_Thickness_2   := XXXX; 
Generating_Planet_Tooth_Thickness_2:= XXXX; 
Generating_Ring_Tooth_Thickness_2  := XXXX; 
 
Sun_Generating_Diametral_Pitch_2   := XXXX; 
Planet_Generating_Diametral_Pitch_2:= XXXX; 
Ring_Generating_Diametral_Pitch_2  := XXXX; 
 
Generating_Sun_Pressure_Angle_2   := XXXX; 
Generating_Planet_Pressure_Angle_2:= XXXX; 
Generating_Ring_Pressure_Angle_2  := XXXX; 
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Omega_Carrier_2 := XXXX*2*Pi/60; // XXXX is RPM  
 
 
Once the main parameters are specified the calculation of the most important gears data can 

be easily calculated. 

1. The generating pitch radii: 

2 d

Zr
P

=  (2.5.1) 

 
STAGE 1 
Sun_Generating_Pitch_Rad_1=0.5*Sun_Number_of_Teeth_1/Sun_Generating_Diametral_Pitch_1; 
Planet_Generating_Pitch_Rad_1=0.5*Planet_Number_of_Teeth_1/Planet_Generating_Diametral_Pitch_1; 
Ring_Generating_Pitch_Rad_1=0.5*Ring_Number_of_Teeth_1/Ring_Generating_Diametral_Pitch_1; 
 
STAGE 2 
Sun_Generating_Pitch_Rad_2=0.5*Sun_Number_of_Teeth_2/Sun_Generating_Diametral_Pitch_2; 
Planet_Generating_Pitch_Rad_2=0.5*Planet_Number_of_Teeth_2/Planet_Generating_Diametral_Pitch_2; 
Ring_Generating_Pitch_Rad_2=0.5*Ring_Number_of_Teeth_2/Ring_Generating_Diametral_Pitch_2; 
 
 
2. The operating pitch radii: 

' '; ' 'S P
S R

P S R S

Z Zr a r a
Z Z Z Z

= =
+ −

 (2.5.2) 

 

: ' '; : ' 'P P
P P

P S R P

Z ZPlanet at sun mesh r a Planet at ring mesh r a
Z Z Z Z

= =
+ −

 (2.5.3) 

 
STAGE 1 
Sun_Operating_Pitch_Rad_1=Cent_Dist_Planet_Sun_1*Sun_Number_of_Teeth_1/ 

(Planet_Number_of_Teeth_1+Sun_Number_of_Teeth_1); 
Ring_Operating_Pitch_Rad_1=Cent_Dist_Planet_Sun_1*Ring_Number_of_Teeth_1/ 

(Ring_Number_of_Teeth_1-Planet_Number_of_Teeth_1); 
Planet_Operating_Pitch_Rad_At_Sun_1=Cent_Dist_Planet_Sun_1*Planet_Number_of_Teeth_1/ 

(Planet_Number_of_Teeth_1+Sun_Number_of_Teeth_1); 
Planet_Operating_Pitch_Rad_At_Ring_1=Cent_Dist_Planet_Sun_1*Planet_Number_of_Teeth_1/ 

(Ring_Number_of_Teeth_1-Planet_Number_of_Teeth_1); 
 

STAGE2 
Sun_Operating_Pitch_Rad_2=Cent_Dist_Planet_Sun_2*Sun_Number_of_Teeth_2/ 

(Planet_Number_of_Teeth_2+Sun_Number_of_Teeth_2); 
Planet_Operating_Pitch_Rad_At_Sun_2=Cent_Dist_Planet_Sun_2*Planet_Number_of_Teeth_2/ 

(Planet_Number_of_Teeth_2+Sun_Number_of_Teeth_2); 
Planet_Operating_Pitch_Rad_At_Ring_2=Cent_Dist_Planet_Sun_2*Planet_Number_of_Teeth_2/ 

(Ring_Number_of_Teeth_2-Planet_Number_of_Teeth_2); 
Ring_Operating_Pitch_Rad_2=Cent_Dist_Planet_Sun_2*Ring_Number_of_Teeth_2/ 

(Ring_Number_of_Teeth_2-Planet_Number_of_Teeth_2); 
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3. The base radii for each gears: 

cos( )br r α=  (2.5.4) 

 
STAGE1 
Sun_BasePitch_Rad_1=Sun_Generating_Pitch_Rad_1*cos(Generating_Sun_Pressure_Angle_1*pi/180); 
Planet_BasePitch_Rad_1=Planet_Generating_Pitch_Rad_1*cos(Generating_Planet_Pressure_Angle_1*pi/180); 
Ring_BasePitch_Rad_1=Ring_Generating_Pitch_Rad_1*cos(Generating_Ring_Pressure_Angle_1*pi/180); 
 
STAGE2 
Sun_BasePitch_Rad_2=Sun_Generating_Pitch_Rad_2*cos(Generating_Sun_Pressure_Angle_2*pi/180); 
Planet_BasePitch_Rad_2=Planet_Generating_Pitch_Rad_2*cos(Generating_Planet_Pressure_Angle_2*pi/180); 
Ring_BasePitch_Rad_2=Ring_Generating_Pitch_Rad_2*cos(Generating_Ring_Pressure_Angle_2*pi/180); 
 
 
4. The operating tooth thickness: 

( ) ( )' 2 ' tan( ) tan( ') '
2
ss r
r

α α α α⎛ ⎞= + − − −⎜ ⎟
⎝ ⎠

 (2.5.5) 

 
 
STAGE1 
Sun_Operating_Tooth_Thickness_1=2*Sun_Operating_Pitch_Rad_1*(Generating_Sun_Tooth_Thickness_1/(2* 

Sun_Generating_Pitch_Rad_1)+(Sun_Generating_Involute_Angle_Pitch_1- 
atan(Sun_Generating_Involute_Angle_Pitch_1))- 
(Sun_Operating_Involute_Angle_Pitch_1- 
atan(Sun_Operating_Involute_Angle_Pitch_1))); 
 

Planet_Operating_Tooth_Thickness_At_Sun_1= 2*Planet_Operating_Pitch_Rad_At_Sun_1* 
(Generating_Planet_Tooth_Thickness_1/(2*Planet_Generating_Pitch_Rad_1)+ 

   (Planet_Generating_Involute_Angle_Pitch_1- 
atan(Planet_Generating_Involute_Angle_Pitch_1))- 

   (Planet_Operating_Involute_Angle_Pitch_At_Sun_1- 
atan(Planet_Operating_Involute_Angle_Pitch_At_Sun_1))); 
 

Planet_Operating_Tooth_Thickness_At_Ring_1=2*Planet_Operating_Pitch_Rad_At_Ring_1* 
(Generating_Planet_Tooth_Thickness_1/(2*Planet_Generating_Pitch_Rad_1)+ 

   (Planet_Generating_Involute_Angle_Pitch_1- 
atan(Planet_Generating_Involute_Angle_Pitch_1))- 

   (Planet_Operating_Involute_Angle_Pitch_At_Ring_1- 
atan(Planet_Operating_Involute_Angle_Pitch_At_Ring_1))); 
 

Ring_Operating_Tooth_Thickness_1=2*Ring_Operating_Pitch_Rad_1*(Generating_Ring_Tooth_Thickness_1/ 
(2*Ring_Generating_Pitch_Rad_1)+

 (Ring_Operating_Involute_Angle_Pitch_1- 
atan(Ring_Operating_Involute_Angle_Pitch_1))- 

   (Ring_Generating_Involute_Angle_Pitch_1- 
atan(Ring_Generating_Involute_Angle_Pitch_1))); 

 
STAGE2 
Sun_Operating_Tooth_Thickness_2=2*Sun_Operating_Pitch_Rad_2*(Generating_Sun_Tooth_Thickness_2/(2* 

Sun_Generating_Pitch_Rad_2)+(Sun_Generating_Involute_Angle_Pitch_2-
atan(Sun_Generating_Involute_Angle_Pitch_2))- 
(Sun_Operating_Involute_Angle_Pitch_2-
atan(Sun_Operating_Involute_Angle_Pitch_2))); 

Planet_Operating_Tooth_Thickness_At_Sun_2= 2*Planet_Operating_Pitch_Rad_At_Sun_2* 
(Generating_Planet_Tooth_Thickness_2/(2*Planet_Generating_Pitch_Rad_2)+ 
(Planet_Generating_Involute_Angle_Pitch_2-
atan(Planet_Generating_Involute_Angle_Pitch_2))- 
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(Planet_Operating_Involute_Angle_Pitch_At_Sun_2-
atan(Planet_Operating_Involute_Angle_Pitch_At_Sun_2))); 

Planet_Operating_Tooth_Thickness_At_Ring_2=2*Planet_Operating_Pitch_Rad_At_Ring_2* 
(Generating_Planet_Tooth_Thickness_2/(2*Planet_Generating_Pitch_Rad_2)+ 
(Planet_Generating_Involute_Angle_Pitch_2-
atan(Planet_Generating_Involute_Angle_Pitch_2))- 

   (Planet_Operating_Involute_Angle_Pitch_At_Ring_2- 
atan(Planet_Operating_Involute_Angle_Pitch_At_Ring_2))); 

Ring_Operating_Tooth_Thickness_2= 2*Ring_Operating_Pitch_Rad_2*(Generating_Ring_Tooth_Thickness_2/ 
(2*Ring_Generating_Pitch_Rad_2)+ 
(Ring_Operating_Involute_Angle_Pitch_2-
atan(Ring_Operating_Involute_Angle_Pitch_2))- 
(Ring_Generating_Involute_Angle_Pitch_2-
atan(Ring_Generating_Involute_Angle_Pitch_2))); 

 

The previous formula contain value of the generating and operating involute angle calculated 

as follows: 

2

tan( ) 1
b

r
r

α
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (2.5.6) 

 
 
STAGE1 
Sun_Generating_Involute_Angle_Pitch_1=((Sun_Generating_Pitch_Rad_1/Sun_BasePitch_Rad_1)^2-1)^0.5; 
Planet_Generating_Involute_Angle_Pitch_1=((Planet_Generating_Pitch_Rad_1/Planet_BasePitch_Rad_1)^2 

-1)^0.5; 
Ring_Generating_Involute_Angle_Pitch_1=((Ring_Generating_Pitch_Rad_1/Ring_BasePitch_Rad_1)^2-1)^0.5; 
 
STAGE2 
Sun_Generating_Involute_Angle_Pitch_2=((Sun_Generating_Pitch_Rad_2/Sun_BasePitch_Rad_2)^2-1)^0.5; 
Planet_Generating_Involute_Angle_Pitch_2=((Planet_Generating_Pitch_Rad_2/Planet_BasePitch_Rad_2)^2 

-1)^0.5; 
Ring_Generating_Involute_Angle_Pitch_2=((Ring_Generating_Pitch_Rad_2/Ring_BasePitch_Rad_2)^2-1)^0.5; 
 
 
 

2
'tan( ') 1

b

r
r

α
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (2.5.7) 

 
STAGE1 
Sun_Operating_Involute_Angle_Pitch_1=((Sun_Operating_Pitch_Rad_1/Sun_BasePitch_Rad_1)^2-1)^0.5; 
Planet_Operating_Involute_Angle_Pitch_At_Sun_1=((Planet_Operating_Pitch_Rad_At_Sun_1/ 

Planet_BasePitch_Rad_1)^2-1)^0.5; 
Planet_Operating_Involute_Angle_Pitch_At_Ring_1=((Planet_Operating_Pitch_Rad_At_Ring_1/ 

Planet_BasePitch_Rad_1)^2-1)^0.5; 
Ring_Operating_Involute_Angle_Pitch_1=((Ring_Operating_Pitch_Rad_1/Ring_BasePitch_Rad_1)^2-1)^0.5; 
 
STAGE2 
Sun_Operating_Involute_Angle_Pitch_2=((Sun_Operating_Pitch_Rad_2/Sun_BasePitch_Rad_2)^2-1)^0.5; 
Planet_Operating_Involute_Angle_Pitch_At_Sun_2=((Planet_Operating_Pitch_Rad_At_Sun_2/ 

Planet_BasePitch_Rad_2)^2-1)^0.5; 
Planet_Operating_Involute_Angle_Pitch_At_Ring_2=((Planet_Operating_Pitch_Rad_At_Ring_2/ 

Planet_BasePitch_Rad_2)^2-1)^0.5; 
Ring_Operating_Involute_Angle_Pitch_2=((Ring_Operating_Pitch_Rad_2/Ring_BasePitch_Rad_2)^2-1)^0.5; 
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5. Initial rotations of gears: 

In a multi mesh system a very important task is to calculate the relative motion between gears. 

In order to have a proper mesh between the gears the initial position of every tooth must 

calculated. If the initial position of a gear is zero, Calyx®  will create the gear with the first 

tooth’s axis coincident with the vertical axis, i.e. tooth number 1 of the gear will point 

according to y axis of the fixed reference frame. In order to mesh properly the gears, an initial 

rotation must be calculated and imposed to each gear. Figure 56 shows the situation between 

sun and planet 1. In order to reach the correct mesh position, both sun and planet are rotated 

by the angle corresponding to half of the tooth thickness at operating pitch circle. The sun 

initial rotation is negative, while the planet initial rotation is positive.  

 
Figure 56: Teeth alignment. 

 
The same problem is solved for all gears. 

Initial rotation for the sun: 

,
'

2 '
S

initial sun
S

s
r

ϑ =  (2.5.8) 

Initial rotation for the ring: 

,
'

2 '
R

initial ring
R

s
r

ϑ =  (2.5.9) 

Initial rotation for the planet 1 (the π value is due to allow tooth 1 of planet 1 to point in the 

opposite direction with respect to the y direction of the fixed reference frame) at sun mesh: 

1
, 1

1

'
1

2 '
P at sun

initial planet
P at sun

s
Planet at sun mesh

r
ϑ π= −  (2.5.10)

Initial rotation for the planet 1 at ring mesh (this rotation allows to recuperate at ring the 

previous planet initial rotation at sun) : 
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1
, 1,

1

'
1

2 '
P at ring

initial planet ring
P at ring

s
Planet at ring mesh

r
ϑ =  (2.5.11)

 
 
 
STAGE1 
Sun_Initial_Rotn_1:=-Sun_Operating_Tooth_Thickness_1/(2*Sun_Operating_Pitch_Rad_1); 
Ring_Initial_Rotn_1:=-Ring_Operating_Tooth_Thickness_1/(2*Ring_Operating_Pitch_Rad_1); 
Planet_Initial_Rotn_At_Sun_1:=pi-Planet_Operating_Tooth_Thickness_At_Sun_1/ 

(2*Planet_Operating_Pitch_Rad_At_Sun_1); 
Planet_Initial_Rotn_At_Ring_1:=Planet_Operating_Tooth_Thickness_At_Ring_1/ 

(2*Planet_Operating_Pitch_Rad_At_Ring_1); 
 
STAGE2 
Sun_Initial_Rotn_2:=-Sun_Operating_Tooth_Thickness_2/(2*Sun_Operating_Pitch_Rad_2); 
Ring_Initial_Rotn_2 := -Ring_Operating_Tooth_Thickness_2/(2*Ring_Operating_Pitch_Rad_2); 
Planet_Initial_Rotn_At_Sun_2 := pi-Planet_Operating_Tooth_Thickness_At_Sun_2/ 

(2*Planet_Operating_Pitch_Rad_At_Sun_2); 
Planet_Initial_Rotn_At_Ring_2:=Planet_Operating_Tooth_Thickness_At_Ring_2/ 

(2*Planet_Operating_Pitch_Rad_At_Ring_2); 
 
 
 

More complicated is the calculation of the initial rotation for planets 2, 3 and 4 of stage 1 and 

2, 3, 4, 5 and 6 of stage 2. In fact the kinematics of the planetary system must be 

implemented. Using Willis formula, the speed of a planet ΩP can be calculated with respect to 

the carrier speed ΩC. 

1 S
P C

P

Z
Z

⎛ ⎞
Ω = Ω +⎜ ⎟

⎝ ⎠
 (2.5.12)

Using equation (2.5.12) the angular position of a planet around its own axis can be calculated 

with respect to the angular position of the planet αP with respect to the carrier axis αC.  

1 S
P C

P

Z
Z

α α
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 (2.5.13)

 

 
Figure 57: Phase angles for planet 2. 
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If planet 1 is properly meshed with sun and ring, and αC corresponds to the phase angles 

between planet 1 and planet 2 (see Figure 57), equation (2.5.13) allows to calculate the further 

rotation to be added, which assures the proper mesh of planet 2 at its own location. The 

following equation summarize the previous concepts. 

, 2 , 1 1 S
initial planet initial planet C

P

Z
Z

ϑ ϑ α
⎛ ⎞

= + +⎜ ⎟
⎝ ⎠

 (2.5.14)

 

The same approaches can be used for planet 3 and 4 of stage 1 and for planet 2, 3, 4, 5 and 6 

of stage 2. 
STAGE 1 
Planet_1_Initial_Rotn_1  := Planet_Initial_Rotn_At_Sun_1; 
Planet_2_Initial_Rotn_1  := Planet_1_Initial_Rotn_1 + 
                            (dTheta_Pia2_1)*(1+Sun_Number_of_Teeth_1/Planet_Number_of_Teeth_1); 
Planet_3_Initial_Rotn_1  := Planet_1_Initial_Rotn_1 + 
                            (dTheta_Pia3_1)*(1+Sun_Number_of_Teeth_1/Planet_Number_of_Teeth_1); 
Planet_4_Initial_Rotn_1  := Planet_1_Initial_Rotn_1 + 
                            (dTheta_Pia4_1)*(1+Sun_Number_of_Teeth_1/Planet_Number_of_Teeth_1); 
 
STAGE2 
Planet_1_Initial_Rotn_2  := Planet_Initial_Rotn_At_Sun_2; 
Planet_2_Initial_Rotn_2  := Planet_1_Initial_Rotn_2 + 
                            (dTheta_Pia2_2)*(1+Sun_Number_of_Teeth_2/Planet_Number_of_Teeth_2); 
Planet_3_Initial_Rotn_2  := Planet_1_Initial_Rotn_2 + 
                            (dTheta_Pia3_2)*(1+Sun_Number_of_Teeth_2/Planet_Number_of_Teeth_2); 
Planet_4_Initial_Rotn_2  := Planet_1_Initial_Rotn_2 + 
                           (dTheta_Pia4_2)*(1+Sun_Number_of_Teeth_2/Planet_Number_of_Teeth_2); 
Planet_5_Initial_Rotn_2  := Planet_1_Initial_Rotn_2 + 
                            (dTheta_Pia5_2)*(1+Sun_Number_of_Teeth_2/Planet_Number_of_Teeth_2); 
Planet_6_Initial_Rotn_2  := Planet_1_Initial_Rotn_2 + 
                            (dTheta_Pia6_2)*(1+Sun_Number_of_Teeth_2/Planet_Number_of_Teeth_2); 
 

 
 
 
 
6. Speeds of gears: 

All speeds in the model are calculated from the speed of the second stage carrier. For a 

planetary system with fixed rings (ΩR=0) the formula of Willis yields: 

P R
P C

P

Z Z
Z

⎛ ⎞−
Ω = Ω ⎜ ⎟

⎝ ⎠
 (2.5.15)

 

S R
S C

S

Z Z
Z

⎛ ⎞+
Ω = Ω ⎜ ⎟

⎝ ⎠
 (2.5.16)
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// Define speeds stage 2 
Omega_Planet_2 := (Planet_Number_of_Teeth_2-Ring_Number_of_Teeth_2)/(Planet_Number_of_Teeth_2)* 

Omega_Carrier_2; 
Omega_Sun_2 := (Sun_Number_of_Teeth_2+Ring_Number_of_Teeth_2)/(Sun_Number_of_Teeth_2)* 

Omega_Carrier_2; 
Omega_Ring_2 := 0; 
 
// Define speeds stage 1 
Omega_Carrier_1 := Omega_Sun_2; 
Omega_Planet_1  := (Planet_Number_of_Teeth_1-Ring_Number_of_Teeth_1)/(Planet_Number_of_Teeth_1)* 

Omega_Carrier_1; 
Omega_Sun_1     := (Sun_Number_of_Teeth_1+Ring_Number_of_Teeth_1)/(Sun_Number_of_Teeth_1)* 

Omega_Carrier_1; 
Omega_Ring_1    := 0; 
 
Note that in a compound planetary system the speed of the first stage carrier must be equal to 

the second stage sun. 
 
 
7. Angular rotations of gears: 

Calyx® reserves a particular variable called “time” (also refereed as t) value during 

calculations. The initial value of time must be imposed at the beginning of the analysis and a 

delta step value can be imposed to specify the current value of time. Calyx® will calculate the 

position of gears using variable “time” and the described kinematics as principal references. 

In this way it is possible to perform both static and dynamic analyses of the system. For 

example, a static analysis can be performed for 10 step in a mesh cycle, speed and time will 

be used to calculate relative position of the gears at each step. 

The following line simply defines relationships between the speed and the angular rotation for 

stage 1 and 2 using the variable time. 
 
// Define angular rotations stage 2 
Sun_theta_1     :=  Omega_Sun_1*Time; 
Carrier_theta_1 :=  Omega_Carrier_1*Time; 
Planet_theta_1  :=  Omega_Planet_1*Time; 
Ring_theta_1    :=  Omega_Ring_1*Time; 
 
// Define angular rotations stage 2 
Sun_theta_2     :=  Omega_Sun_2*Time; 
Carrier_theta_2 :=  Omega_Carrier_2*Time; 
Planet_theta_2  :=  Omega_Planet_2*Time; 
Ring_theta_2    :=  Omega_Ring_2*Time; 
 
Variable “Time” is automatically calculated using a time increment value:  
time_increment := XXXX; 
Set_Time_Increment(time_increment); // Set the value of the delta time between each step 
Initialize(0);   // Set to 0 the initial time value         
 

Note that using  equation (2.4.15) the mesh frequency for each stage can be calculated as 

follow: 
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Mesh_freq_1:=Omega_Sun_1*(Ring_Number_of_Teeth_1*Sun_Number_of_Teeth_1)/ 
(Ring_Number_of_Teeth_1+Sun_Number_of_Teeth_1); 

Mesh_freq_2:=Omega_Sun_2*(Ring_Number_of_Teeth_2*Sun_Number_of_Teeth_2)/ 
(Ring_Number_of_Teeth_2+Sun_Number_of_Teeth_2); 

 
 

8. Reference frame: 

In order to define the kinematics of the system, a reference frame must be defined for each 

gear. Figure 58 shows the gears reference frame for the first stage with respect to the fixed 

reference frame, z-axes of all frame point (not represented) according to right hand rule. The 

description of the reference is based to the kinematics of the relative wheel and the initial 

positions calculated previously to have a proper mesh. All references are defined by means of 

“translate” and “rotate” operators, which translate and rotate each reference frame with 

respect to the fixed frame or to the carrier reference frame. The reference frame has origin at 

(0,0,0) and versors e1, e2 and e3, which are uniquely defined using right hand rule. 

The amount by which the fixed reference frame is translated and rotated, to create the sun, 

ring and carrier reference frames, is reported in the following chart: 
Body Translation on x (e1) Translation on y (e2) Rotation on z (e3) 

Sun - - , , 1 , 1initial sun stage S stage tϑ + Ω  

Ring - - ( )
, 1 , , 1

, 1
, 1, 1 , 1, , 1

, 1

R stage initial ring stage

P stage
initial planet stage initial planet ring stage

R stage

t

Z
Z

ϑ

ϑ ϑ

Ω + +

−
 

Carrier 1st stage - - , 1C stage tΩ  

Table 21: Translations and rotations for stage 1 with respect to fixed frame. 

 
 

 

Figure 58: Reference frame for the first stage gears. 
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The amount by which the carrier reference frame is translated and rotated, to create the 

planets reference frames, is reported in Table 21: 

 
Body Translation on x (e1) Translation on y (e2) Rotation on z (e3) 

Planet 1 - , 1 'PS stagea  , 1, 1 , 1 , 1initial planet stage P stage C staget tϑ + Ω − Ω  

Planet 2 , 1 2, 1'sin( )PS stage P stagea ϕ−  , 1 2, 1'cos( )PS stage P stagea ϕ  , 2, 1 , 1 , 1initial planet stage P stage C staget tϑ + Ω − Ω  

Planet 3 , 1 3, 1'sin( )PS stage P stagea ϕ−  , 1 3, 1'cos( )PS stage P stagea ϕ  , 3, 1 , 1 , 1initial planet stage P stage C staget tϑ + Ω − Ω  

Planet 4 , 1 4, 1'sin( )PS stage P stagea ϕ−  , 1 4, 1'cos( )PS stage P stagea ϕ  , 4, 1 , 1 , 1initial planet stage P stage C staget tϑ + Ω − Ω  

Table 22: Translations and rotations for stage 1 with respect to the first stage carrier 

reference frame. 
 
 
// Define reference frames stage 1: 
XSun_1 :=Rotate(Sun_theta_1+Sun_Initial_Rotn_1,e3)*Fixed_Frame; 
XRing_1:=Rotate(Ring_theta_1+Ring_Initial_Rotn_1+ 

(Planet_Initial_Rotn_At_Sun_1-Planet_Initial_Rotn_At_Ring_1)* 
Planet_Number_of_Teeth_1/Ring_Number_of_Teeth_1,e3)*Fixed_Frame; 

XCarrier_1:=Rotate(Carrier_theta_1,e3)*Fixed_Frame; 
XPlanet_1_1:=Rotate(Planet_theta_1-Carrier_theta_1+Planet_1_Initial_Rotn_1,e3)* 
                 Translate(Cent_Dist_Planet_Sun_1*e2)*XCarrier_1; 
XPlanet_2_1:=Rotate(Planet_theta_1 - Carrier_theta_1+Planet_2_Initial_Rotn_1,e3)* 
                Translate(-Cent_Dist_Planet_Sun_1*sin(dTheta_Pia2_1)*e1+ 

Cent_Dist_Planet_Sun_1*cos(dTheta_Pia2_1)*e2)*XCarrier_1; 
XPlanet_3_1:=Rotate(Planet_theta_1 - Carrier_theta_1+Planet_3_Initial_Rotn_1,e3)* 

Translate(-Cent_Dist_Planet_Sun_1*sin(dTheta_Pia3_1)*e1+   
Cent_Dist_Planet_Sun_1*cos(dTheta_Pia3_1)*e2)*XCarrier_1; 

XPlanet_4_1:=Rotate(Planet_theta_1 - Carrier_theta_1+Planet_4_Initial_Rotn_1,e3)* 
Translate(-Cent_Dist_Planet_Sun_1*sin(dTheta_Pia4_1)*e1+ 
 Cent_Dist_Planet_Sun_1*cos(dTheta_Pia4_1)*e2)*XCarrier_1; 

 

 

 

The same approach apply to stage 2 yield to Table 22: 

 
Body Translation on x (e1) Translation on y (e2) Rotation on z (e3) 

Sun - - , , 2 , 2initial sun stage S stage tϑ + Ω  

Ring - - ( )
, 2 , , 2

, 2
, 1, 2 , 1, , 2

, 2

R stage initial ring stage

P stage
initial planet stage initial planet ring stage

R stage

t

Z
Z

ϑ

ϑ ϑ

Ω + +

−
 

Carrier 2nd stage - - , 2C stage tΩ  

Table 23: Translations and rotations for stage 2 with respect to fixed frame. 
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Body Translation on x (e1) Translation on y (e2) Rotation on z (e3) 

Planet 1 - , 2 'PS stagea  , 1, 2 , 2 , 2initial planet stage P stage C staget tϑ + Ω − Ω  

Planet 2 , 1 2, 1'sin( )PS stage P stagea ϕ−
 

, 1 2, 1'cos( )PS stage P stagea ϕ
 

, 2, 2 , 2 , 2initial planet stage P stage C staget tϑ + Ω − Ω  

Planet 3 , 2 3, 2'sin( )PS stage P stagea ϕ−
 

, 2 3, 2'cos( )PS stage P stagea ϕ
 

, 3, 2 , 2 , 2initial planet stage P stage C staget tϑ + Ω − Ω  

Planet 4 , 2 4, 2'sin( )PS stage P stagea ϕ−
 

, 2 4, 2'cos( )PS stage P stagea ϕ
 

, 4, 2 , 2 , 2initial planet stage P stage C staget tϑ + Ω − Ω  

Planet 5 , 2 5, 2'sin( )PS stage P stagea ϕ−
 

, 2 5, 2'cos( )PS stage P stagea ϕ
 

, 5, 2 , 2 , 2initial planet stage P stage C staget tϑ + Ω − Ω  

Planet 6 , 2 6, 2'sin( )PS stage P stagea ϕ−
 

, 2 6, 2'cos( )PS stage P stagea ϕ
 

, 6, 2 , 2 , 2initial planet stage P stage C staget tϑ + Ω − Ω  

Table 24: Translations and rotations for stage 2 with respect to the first stage carrier. 
 
 
 
 
// Define reference frames stage 2: 
XSun_2 :=Rotate(Sun_theta_2+Sun_Initial_Rotn_2,e3)*Fixed_Frame; 
XRing_2:=Rotate(Ring_theta_2+Ring_Initial_Rotn_2 + 
     (Planet_Initial_Rotn_At_Sun_2- Planet_Initial_Rotn_At_Ring_2)* 

Planet_Number_of_Teeth_2/Ring_Number_of_Teeth_2,e3)*Fixed_Frame; 
XCarrier_2 := Rotate(Carrier_theta_2,e3)*Fixed_Frame;  
XPlanet_1_2:=Rotate(Planet_theta_2-Carrier_theta_2+Planet_1_Initial_Rotn_2,e3)* 
                Translate(Cent_Dist_Planet_Sun_2*e2)* XCarrier_2; 
 
XPlanet_2_2:=Rotate(Planet_theta_2 - Carrier_theta_2+Planet_2_Initial_Rotn_2,e3)* 

Translate(-Cent_Dist_Planet_Sun_2*sin(dTheta_Pia2_2)*e1+ 
Cent_Dist_Planet_Sun_2*cos(dTheta_Pia2_2)*e2)* XCarrier_2; 

 
XPlanet_3_2:=Rotate(Planet_theta_2 - Carrier_theta_2+Planet_3_Initial_Rotn_2,e3)* 

Translate(-Cent_Dist_Planet_Sun_2*sin(dTheta_Pia3_2)*e1+ 
Cent_Dist_Planet_Sun_2*cos(dTheta_Pia3_2)*e2)*XCarrier_2; 

 
XPlanet_4_2:=Rotate(Planet_theta_2 - Carrier_theta_2+Planet_4_Initial_Rotn_2,e3)* 

Translate(-Cent_Dist_Planet_Sun_2*sin(dTheta_Pia4_2)*e1+ 
Cent_Dist_Planet_Sun_2*cos(dTheta_Pia4_2)*e2)*XCarrier_2; 

 
XPlanet_5_2:=Rotate(Planet_theta_2 - Carrier_theta_2+Planet_5_Initial_Rotn_2,e3)* 

Translate(-Cent_Dist_Planet_Sun_2*sin(dTheta_Pia5_2)*e1+ 
Cent_Dist_Planet_Sun_2*cos(dTheta_Pia5_2)*e2)* XCarrier_2; 

 
XPlanet_6_2:=Rotate(Planet_theta_2 - Carrier_theta_2+Planet_6_Initial_Rotn_2,e3)* 

Translate(-Cent_Dist_Planet_Sun_2*sin(dTheta_Pia6_2)*e1+ 
Cent_Dist_Planet_Sun_2*cos(dTheta_Pia6_2)*e2)*XCarrier_2; 
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9. Build the structure hierarchy: 

The creation of each gear structure requires the assembling of different tooth substructure. 

The main idea is to load the tooth mesh information from a “.msh” file to create the first 

substructure and merge the same substructure many times to compose the full gear final 

structure. Calyx® provides a particular condensed substructure instruction for this purpose. In 

this paragraph the building of the first stage sun structure is explain. 

The first step is to load the sun1.msh file and declare 4 set of nodes contained in the sun1.msh 

file. This set are called Left side, Right side, Base and Slave. Each set contains the list of 

nodes  according to Figure 59. The Slave nodes set contains all remaining nodes. Note that 

only the base nodes will be used as constrained nodes. 

 
Figure 59: Nodes sets for the first substructure of the first stage sun. 

 
The following code line are used to condensate all information and generate the first tooth 

substructure (called “Sun_1_Tooth_1”) from the sun1.msh file. 
 
// Sun 1 
Sun_1_Tooth_1:=Condense_Substructures( 
  [[ "Sun_Tooth_Mesh","Meshfiles\sun1.msh",Identity_Transformation, TwoDFEM]], 
  // New Dofsets: 
  [[ "Left_Side" ,Master,[["Left_Side" ]]], [ "Right_Side",Master,[["Right_Side"]]], 

[ "Base", Slave ,     [["Base"      ]]], [ "Slave"     ,Slave ,[["Slave"     ]]] ], 
  // Constrained Dofsets: 
  [ "Base" ], 
  // Label: 
  "Sun 1 Tooth 1" 
); 
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The second step is to generate a second substructure (called “Sun_2_Tooth_1”) using two 

times the “Sun_1_Tooth_1” structure. Two structures “Sun_1_Tooth_1” are used, and a 

rotation of (-dTheta_Sun_1) is used to calculate nodes coordinates for the second tooth. New 

sets of nodes are created merging the pre existing sets (see Figure 60). No sets are specified as 

constrained sets, because the constrained set is automatically composed using the constrained 

Base sets previously defined for “Sun_1_Tooth_1”. 

 

 
Sun_2_Tooth_1:=Condense_Substructures( 
  [["Left", Sun_1_Tooth_1,Identity_Transformation], ["Right",Sun_1_Tooth_1,Rotate(-dTheta_Sun_1,e3)]  ], 
  // New Dofsets: 
  [["Left_Side" ,Master,[["Left_Side"] ,[ ]]], 
   ["Right_Side",Master,[[ ],["Right_Side"]]], 
   ["Middle",Slave,[["Right_Side"],["Left_Side"]]] 
  ], 
  // Constrained Dofsets: 
  [], 
  // Label: 
  "Sun 2 Tooth 1" 
); 
 

 

 

 
Figure 60: Nodes sets for the second substructure of the first stage sun. 

 
 
The same technique is repeated many time using combinations of all created substructures 

until the full gear is generated. 
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Sun_4_Tooth_1:=Condense_Substructures( 
  [["Left", Sun_2_Tooth_1,Identity_Transformation], 
   ["Right",Sun_2_Tooth_1,Rotate(-2*dTheta_Sun_1,e3)] 
  ], 
  [["Left_Side" ,Master,[["Left_Side"] ,[]]], 
   ["Right_Side",Master,[[],["Right_Side"]]], 
   ["Middle",Slave,[["Right_Side"],["Left_Side"]]] 
  ], 
  // Constrained Dofsets: 
  [], 
  // Label: 
  "Sun 4 Tooth 1" 
); 
 
Sun_5_Tooth_1:=Condense_Substructures( 
  [["Left", Sun_4_Tooth_1,Identity_Transformation], 
   ["Right",Sun_1_Tooth_1,Rotate(-4*dTheta_Sun_1,e3)] 
  ], 
  [["Left_Side" ,Master,[["Left_Side"] ,[]]], 
   ["Right_Side",Master,[[],["Right_Side"]]], 
   ["Middle",Slave,[["Right_Side"],["Left_Side"]]] 
  ], 
  // Constrained Dofsets: 
  [], 
  // Label: 
  "Sun 5 Tooth 1" 
); 
 
Sun_10_Tooth_1:=Condense_Substructures( 
  [["Left", Sun_5_Tooth_1,Identity_Transformation], 
   ["Right",Sun_5_Tooth_1,Rotate(-5*dTheta_Sun_1,e3)] 
  ], 
  [["Left_Side" ,Master,[["Left_Side"] ,[]]], 
   ["Right_Side",Master,[[],["Right_Side"]]], 
   ["Middle",Slave,[["Right_Side"],["Left_Side"]]] 
  ], 
  // Constrained Dofsets: 
  [], 
  // Label: 
  "Sun 10 Tooth 1" 
); 
); 
Sun_20_Tooth_1:=Condense_Substructures( 
  [["Left", Sun_10_Tooth_1,Identity_Transformation], 
   ["Right",Sun_10_Tooth_1,Rotate(-10*dTheta_Sun_1,e3)] 
  ], 
  [["Left_Side" ,Master,[["Left_Side"] ,[]]], 
   ["Right_Side",Master,[[],["Right_Side"]]], 
   ["Middle",Slave,[["Right_Side"],["Left_Side"]]] 
  ], 
  // Constrained Dofsets: 
  [], 
  // Label: 
  "Sun 20 Tooth 1" 
); 
 

Sun_25_Tooth_1:=Condense_Substructures( 
  [["Left", Sun_20_Tooth_1,Identity_Transformation], 
   ["Right",Sun_5_Tooth_1,Rotate(-20*dTheta_Sun_1,e3)] 
  ], 
  [["Left_Side" ,Master,[["Left_Side"] ,[]]], 
   ["Right_Side",Master,[[],["Right_Side"]]], 
   ["Middle",Slave,[["Right_Side"],["Left_Side"]]] 
  ], 
  // Constrained Dofsets: 
  [], 
  // Label: 
  "Sun 20 Tooth 1" 
); 
 
Sun_26_Tooth_1:=Condense_Substructures( 
  [["Left", Sun_25_Tooth_1,Identity_Transformation], 
   ["Right",Sun_1_Tooth_1,Rotate(-25*dTheta_Sun_1,e3)] 
  ], 
  [["Left_Side" ,Master,[["Left_Side"] ,[]]], 
   ["Right_Side",Master,[[],["Right_Side"]]], 
   ["Middle",Slave,[["Right_Side"],["Left_Side"]]] 
  ], 
  // Constrained Dofsets: 
  [], 
  // Label: 
  "Sun 26 Tooth 1" 
); 
 
Sun_27_Tooth_1:=Condense_Substructures( 
  [["Left", Sun_26_Tooth_1,Identity_Transformation], 
   ["Right",Sun_1_Tooth_1,Rotate(-26*dTheta_Sun_1,e3)] 
  ], 
  [["Left_Side" ,Master,[["Left_Side"] ,[]]], 
   ["Right_Side",Master,[[],["Right_Side"]]], 
   ["Middle",Slave,[["Right_Side"],["Left_Side"]]] 
  ], 
  // Constrained Dofsets: 
  [], 
  // Label: 
  "Sun 27 Tooth 1" 
); 
 
Sun_28_Tooth_1:=Condense_Substructures( 
  [["Left",Sun_27_Tooth_1,Identity_Transformation], 
   ["Right",Sun_1_Tooth_1,Rotate(-27*dTheta_Sun_1,e3)] 
  ], 
  
[["Middle",Slave,[["Left_Side","Right_Side"],["Left_Side","Right_Sid
e"]]] 
  ], 
  // Constrained Dofsets: 
  [], 
  // Label: 
  "Sun 28 Tooth 1" 
 

 

The same condensing instructions are used to generate all gear structures required to model 

the full compound planetary system. 

A different situation occurs to the carriers structure. In effect for the carrier are not modeled 

as deformable bodies, the condensing instruction will use a “.mesh” file containing a simple 

matrix with masses and moment of inertia information. For example the carrier of the first 

stage is joined with the full structure of the second stage sun to create a unique structure 

called “Carrier_Sun_2_Structure”. 
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Carrier_1_Sun_2_Structure := Condense_Substructures( 
     [["Carrier_lump_Mesh_1","Meshfiles\carrierlump1.msh",Identity_Transformation,TwoDFEM], 
      ["Rigidelement2_Mesh","Meshfiles\rigidelement2.msh",Identity_Transformation,TwoDFEM], 
      ["Sun_2_Mesh",Sun_40_Tooth_2,Identity_Transformation]], 
     // New Dofsets: 
     [["Connect_dof",Slave,[["lump"],["lump"],[]]]], 
     // Constrained Dofsets: 
     ["Connect_dof"], 
     // Label: 
     "Carrier_1_Sun_2_Structure" 
    ); 
 

 

10. Create bodies consisting of reference frames and structures: 

A body is created by connecting a structure to a reference frame. The Calyx® instruction is 

“Define_Body” and allows to specify the value of the constraint on the structure constrained 

set of nodes. For example the “Sun_1_Structure_Body” body is created connecting the 

structure “Sun_1_Structure with the “XSun_1” reference frame. The constrained are given 

(using the value 1) on z direction (translation) and on x and y axis (rotation). The torque 

“Sun_Torque_1” is applied to the rotation on z axis.   

 
Sun_1_Structure_Body := Define_Body("Sun_1_Structure",     XSun_1,     Sun_1_Structure, 
             [0,0,1,1,1,0],[0,0,0,0,0,Sun_Torque_1]); 
 

The next lines shows the creations of all bodies: 
STAGE1 
Ring_Body_1    := Define_Body("Ring_1",    XRing_1,    Ring_106_Tooth_1, 
          [1,1,1,1,1,1],[0,0,0,0,0,0]); 
Planet_1_Body_1:= Define_Body("Planet_1_1",XPlanet_1_1,Planet_39_Tooth_1, 
         [0,0,1,1,1,0],[0,0,0,0,0,0]); //Crack 
Planet_2_Body_1:= Define_Body("Planet_2_1",XPlanet_2_1,Planet_39_Tooth_1, 
          [0,0,1,1,1,0],[0,0,0,0,0,0]); 
Planet_3_Body_1:= Define_Body("Planet_3_1",XPlanet_3_1,Planet_39_Tooth_1, 
          [0,0,1,1,1,0],[0,0,0,0,0,0]); 
Planet_4_Body_1:= Define_Body("Planet_4_1",XPlanet_4_1,Planet_39_Tooth_1, 
          [0,0,1,1,1,0],[0,0,0,0,0,0]); 
 
STAGE2 
Carrier_1_Sun_2_Body := Define_Body("Carrier_1_Sun_2",     XSun_2,     Carrier_1_Sun_2_Structure, 
             [0,0,1,1,1,0],[0,0,0,0,0,0]); 
Ring_Body_2    := Define_Body("Ring_2",    XRing_2,    Ring_106_Tooth_2, 
          [1,1,1,1,1,1],[0,0,0,0,0,0]); 
Carrier_Body_2 := Define_Body("Carrier_2", XCarrier_2, Carrier_Structure_2, 
          [0,0,1,1,1,1],[0,0,0,0,0,0]);  
Planet_1_Body_2:= Define_Body("Planet_1_2",XPlanet_1_2,Planet_33_Tooth_2, 
          [0,0,1,1,1,0],[0,0,0,0,0,0]);  
Planet_2_Body_2:= Define_Body("Planet_2_2",XPlanet_2_2,Planet_33_Tooth_2, 
          [0,0,1,1,1,0],[0,0,0,0,0,0]); 
Planet_3_Body_2:= Define_Body("Planet_3_2",XPlanet_3_2,Planet_33_Tooth_2, 
          [0,0,1,1,1,0],[0,0,0,0,0,0]); 



Chapter 2 

 
90 

Planet_4_Body_2:= Define_Body("Planet_4_2",XPlanet_4_2,Planet_33_Tooth_2, 
          [0,0,1,1,1,0],[0,0,0,0,0,0]); 
Planet_5_Body_2:= Define_Body("Planet_5_2",XPlanet_5_2,Planet_33_Tooth_2, 
          [0,0,1,1,1,0],[0,0,0,0,0,0]); 
Planet_6_Body_2:= Define_Body("Planet_6_2",XPlanet_6_2,Planet_33_Tooth_2, 
          [0,0,1,1,1,0],[0,0,0,0,0,0]); 
 
 
According to previous lines all bodies are constrained on translation along z direction and on 

rotation around x and y axes except the second stage carrier which is constrained also in the 

rotation around z axis and rings which are constrained in all 6 degrees of freedom.  
 
 
 
 
11. Bearing modeling: 

According to Figure 41 all bodies are connected with the ground or each other thought 

stiffness matrix bearings. The used instruction is “Assemble_Bearing”. This instruction 

allows to connect different bodies using the contains of a “.brg” file. In the example a bearing 

between “Sun_1_Structure_Body” and the “Fixed_Body” is created using the stiffness matrix 

specified trough “sun1.brg” file. The “Fixed_Body” is a default body which simulate the 

ground. 
 
 
 
Sun_Bearing_1 := Assemble_Bearing( 
  // Label: 
  "Sun_Bearing_1", 
  // File: 
  "Meshfiles\sun1.brg", 
  [Sun_1_Structure_Body,Constrained,Identity_Transformation], 
  [Fixed_Body,Identity_Transformation]); 
 
 

 

 

 

12. Pairs of surfaces that may come into contact: 

The contact constrain are created by means of the imposition of mating surface between 

bodies. In the example a set of non conformal surface pairs are set between the bodies 

“Planet_1_Body_1” and “Sun_1_Structure_Body”. Calyx® will perform a contact analysis 

between the surface of the teeth using the specified contact parameters (friction coefficient, 

separation tolerance between surface, etc..). Note that two mating surface are created between 

the bodies to consider the possibility of back side contact.  
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Set_Surface_Pairs( 
    [Nonconformal,[Planet_1_Body_1,"SURFACE1",Disjoint_Surface], 
                  [Sun_1_Structure_Body,"SURFACE1",Disjoint_Surface], 
     Friction_Coeff,Separation_Tolerance,Contact_Patch_Width_SP_1, 
     nContact_Patches_Across_Width,nContact_Patches_Across_Length,              
     x1,x2,x3,Fixed_Frame],       //1 
     
    [Nonconformal,[Planet_1_Body_1,"SURFACE2",Disjoint_Surface], 
                  [Sun_1_Structure_Body,"SURFACE2",Disjoint_Surface], 
     Friction_Coeff,Separation_Tolerance,Contact_Patch_Width_SP_1, 
     nContact_Patches_Across_Width,nContact_Patches_Across_Length, 
     x1,x2,x3,Fixed_Frame],               //2 
); 

Similar instructions are used for all mating pairs within the compound planetary system. 

 

COMPOUNDAN.CMD 

The “compoundan.cmd” file is used to set the analysis and post process the data after the 

analysis. In the first part values of the applied loads are given. In the compound planetary 

system the only load that need to be specify is the torque on the first stage sun. Secondly 

parameters for the contact analysis must be specified. These parameters will affect  the 

analysis of each pairs of surface that may come into contact (see (Vijayakar, 2003-a) for 

details on each parameter).  

 
// Applied loads 
Sun_Torque_1 := XXXX; 
 
//Contact parameters 
Friction_Coeff := XXXX; 
Separation_Tolerance := XXXX; 
Contact_Patch_Width_RP_1 := XXXX; 
Contact_Patch_Width_SP_1 := XXXX; 
Contact_Patch_Width_RP_2 := XXXX; 
Contact_Patch_Width_SP_2 := XXXX; 
nContact_Patches_Across_Width := XXXX; 
nContact_Patches_Across_Length := XXXX; 
 
 
The remaining part of the file is composed by the definition of the solution method, a “for” 

loop which analyze every single step and a certain number of standard Calyx® instruction that 

allows to print into “.dat” files all the data required. In the following an example shows how 

the bearing reactions are store into a file called  “Bearing_React_Stage1.dat”.  The first lines 

set the analysis to “Static” and enable stress calculation. Then the “.dat” file is opened to be 

ready to store data. The “for” loop automatically increase the value of time to reach different 

system configuration at each step. Once the configuration is ready the instruction Analyze() 

runs the analysis at the current step. The instruction “Out_to_file” prints the values of bearing 
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reactions into the “Bearing_React_Stage1.dat” file. The “.dat” file is closed at the end of the 

“for” loop just before the end of all calculation. 

 
//Set analysis 
Set_Solution_Method(Static); 
Enable_Stress_Calculation(); 
 
 
// Opening file .dat 
var  Bearing_React_Stage1 := Open_Output_File("StaticResult\Bearing_React_Stage1.dat");  

// Starting “for” loop 
for(var i=0;i<Number_of_Timesteps;i=i+1){ 
    Analyze(); 
     // writing data into .dat file 
    Out_To_File(Bearing_React_Stage1, 
               Eval(Time),"\t", 
               Eval(Bearing_React_Vector(Sun_Bearing_1)[1]),"\t", 
               Eval(Bearing_React_Vector(Sun_Bearing_1)[2]),"\t", 
               Eval(Bearing_React_Vector(Sun_Bearing_1)[6]),"\t", 
               Eval(Bearing_React_Vector(Planet_1_Bearing_1)[1]),"\t", 
               Eval(Bearing_React_Vector(Planet_1_Bearing_1)[2]),"\t", 
               Eval(Bearing_React_Vector(Planet_1_Bearing_1)[6]),"\t", 
               Eval(Bearing_React_Vector(Planet_2_Bearing_1)[1]),"\t", 
               Eval(Bearing_React_Vector(Planet_2_Bearing_1)[2]),"\t", 
               Eval(Bearing_React_Vector(Planet_2_Bearing_1)[6]),"\t", 
               Eval(Bearing_React_Vector(Planet_3_Bearing_1)[1]),"\t", 
               Eval(Bearing_React_Vector(Planet_3_Bearing_1)[2]),"\t", 
               Eval(Bearing_React_Vector(Planet_3_Bearing_1)[6]),"\t", 
               Eval(Bearing_React_Vector(Planet_4_Bearing_1)[1]),"\t", 
               Eval(Bearing_React_Vector(Planet_4_Bearing_1)[2]),"\t", 
               Eval(Bearing_React_Vector(Planet_4_Bearing_1)[6]) 
              ); 
 
}; // ending of for loop 
 
// Close .dat file 
Close_File(Bearing_React_Stage1); 
 
End; 
 
MESH FILE .MSH 

Table 20 shows that a “.msh” is required for each gear modeled as deformable body. Calyx® 

provides separate tools ((Vijayakar, 2003-b), (Vijayakar, 2004), (Vijayakar, 2005))  to create 

each of these mesh file according to the gear manufacturing process. Basically the application 

generate the “.msh” file from both macro and micro geometric gear information. The value of 

module, pressure angle, number of teeth, radii, material properties and cutting tool parameters 

as well as profile modifications on the gear are used to calculate the tooth profile geometry. 

The user can also specify a mesh template trough which an automatic mesh of the tooth is also 

generated using particular Calyx® elements. The “.msh” file contains information about nodes 

coordinates, normal nodes coordinates, elements location, contact surface and the tooth set of 
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nodes used by the “compound.cfg” file to build and constrain the full gear structure. In order 

to show the structure of a “.msh” file, the first stage sun “.msh” is listed below: 
 
 
Mesh File Version No.:1.03  
374  
987 
176 
4 
3 
0 
0 
1.92 
0.2987156240198202  2.651174490384677 
0.1119644761033078  0.9937122098932424 
0.2860296211540961  2.652596937556581 
0.1339803582117775  0.9909839875666227 
………………………………………………. 
………………………………………………. 
-0.2885670239502212  2.56110317353969 
-0.2936413239850207  2.606138831962184 
0 0 0 1 0 0 1 0 0 
0 0 0 1 0 0 1 0 0 
………………………………………………. 
………………………………………………. 
0 0 0 1 0 0 1 0 0 
0 0 0 1 0 0 1 0 0 
0 4 204 197 198 205 
4 41 1 2 42 
29000000 0.29 0.0007353300000000002 0 0 
………………………………………………. 
………………………………………………. 
0 16 297 294 99 100 101 102 103 104 105 106 107 108 109 
110 111 112 
4 509 505 506 510 
29000000 0.29 0.0007353300000000002 0 0 
SURFACE1 
49 
1 2 3 4 5 6 7 8 9 10 
11 12 13 14 15 16 17 18 19 20 
21 22 23 24 25 26 27 28 29 30 
31 32 33 34 35 36 37 38 39 40 
41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 
61 62 63 64 65 66 67 68 69 70 
71 72 73 74 75 76 77 78 79 80 
81 82 83 84 85 86 87 88 89 90 
91 92 93 94 95 96 97 98 
SURFACE2 
49 
99 100 101 102 103 104 105 106 107 108 
109 110 111 112 113 114 115 116 117 118 
119 120 121 122 123 124 125 126 127 128 
129 130 131 132 133 134 135 136 137 138 
139 140 141 142 143 144 145 146 147 148 
149 150 151 152 153 154 155 156 157 158 
159 160 161 162 163 164 165 166 167 168 
169 170 171 172 173 174 175 176 177 178 
179 180 181 182 183 184 185 186 187 188 
189 190 191 192 193 194 195 196 
FILLET1 
16 
1 2 3 4 5 6 7 8 9 10 
11 12 13 14 15 16 17 18 19 20 
21 22 23 24 25 26 27 28 29 30 

31 32 
FILLET2 
16 
165 166 167 168 169 170 171 172 173 174 
175 176 177 178 179 180 181 182 183 184 
185 186 187 188 189 190 191 192 193 194 
195 196 
Right_Side 
30 
2 1 2 2 
3 1 3 2 
4 1 4 2 
5 1 5 2 
6 1 6 2 
7 1 7 2 
8 1 8 2 
9 1 9 2 
10 1 10 2 
11 1 11 2 
12 1 12 2 
13 1 13 2 
14 1 14 2 
15 1 15 2 
16 1 16 2 
Left_Side 
30 
973 1 973 2 
974 1 974 2 
975 1 975 2 
976 1 976 2 
977 1 977 2 
978 1 978 2 
979 1 979 2 
980 1 980 2 
981 1 981 2 
982 1 982 2 
983 1 983 2 
984 1 984 2 
985 1 985 2 
986 1 986 2 
987 1 987 2 
Base 
34 
1 1 1 2 
41 1 41 2 
81 1 81 2 
121 1 121 2 
161 1 161 2 
201 1 201 2 
241 1 241 2 
281 1 281 2 
486 1 486 2 
692 1 692 2 
732 1 732 2 
772 1 772 2 
812 1 812 2 
852 1 852 2 
892 1 892 2 
932 1 932 2 
972 1 972 2 
0 
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2.6 Results 
 
In this section an application of the previously described model for the static analysis of a 

compound planetary system is presented. 

Since the model contains the kinematics of the system, the analysis of more then one relative 

position between the gears results very easy. Therefore a total of 106 mesh cycles on the 

second stage were considered adequate to analyze the static stress behavior of the system 

during rotation. For each mesh cycle 80 steps where considered. Therefore a total of 8480 

different analyses are performed to evaluate the variation of stresses for each body for a 

complete revolution of second stage carrier.  Since the second stage is the slower stage, the 

number of mesh cycles analyzed for first stage results less accurate with 22 steps of analysis 

in around 385 mesh cycle.  

The main goal of the analysis is the description of the hoop stress on the two rings. Another 

interesting result is related to the ring deformation shape due to the applied constraint and rim 

thickness. No particular attention is paid to contact pressure between gears. The torque 

applied at the first stage sun has a typical value for this application. 

Note that in the following paragraphs some stress data will be plotted. All values are 

calculated in the fillet region of a particular tooth for each gear body on the same side of the 

contact surface (see figure above).  

 
Figure 61: Fillet region and contact surface of a gear tooth. 

 

The stress values are not evaluated in a specific point on the fillet region. This means that the 

values recorded  are the maximum or minimum values of the specific stress (Principal, Shear, 

Von Mises etc.) found all along the fillet region. 
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When the x-axis of the plots shows a time value, the data must be considered plotted with 

respect to the system rotation. Since the analysis is purely static, the use of a time variable 

does not involve any dynamical meaning and is merely related to the hypothetic speed of 

rotation through which relative position of the gears are evaluated.  

 

2.6.1 Model connections and finite element mesh 
 
The full model is first presented to show how it appears; this allows to check the location and 

relative position between the bodies. Also connections and mesh refinement can be 

controlled. The first stage, the second stage and the compound planetary models are shown 

respectively in Figure 62 a), Figure 62 b) and Figure 62 c). Bearings, lumped added masses 

and rigid bodies (such as carriers) are not shown in the pictures. 

 

 
a) b) 

 
c) 

Figure 62: Model of planetary system: a) First stage; b) Second stage; c) Full system.  
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Figure 63 shows details of the mesh at planet 1 sun and planet 1 ring interface for stage 2. 

Note that the mesh appears coarse at the gears contact interface. This is due to the particular 

formulation (Vijayakar, 1999) used to solve the contact problem.   

 
 

Figure 63: Details of the mesh on planet 1 for stage 2: a) Planet 1-Sun; b) Planet 1-Ring. 

 

2.6.2 Stress analysis results 
 
Figure 64 shows relative rotations between gears for stage 1 used for the analysis. Stresses are 

calculated at tooth 1 for planet 1, at tooth 90 for the ring and at tooth 28 for the sun. Bending 

stresses are evaluated in the fillet region on the active side of each tooth. Only the contact side 

between planet 1 and sun is considered for tooth 1. 

 
Figure 64: Relative rotations between gears for stage 1. 
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Figure 65: Maximum and minimum principal stresses in fillet region on Planet 1 (tooth 18)  

for stage 1. 

 
Figure 65 shows the maximum and minimum principal stresses in fillet region on planet 1. 

According to Figure 65, the positive tensile peaks are recorded when the planet meshes with 

the sun, while the negative compressive peaks are recorded when the planet meshes with the 

ring. The analysis shows different values of the peaks according to the position of the planet 

during the rotation (black or red flags). This is due to different phase angles between the four 

planets (the planets are not equally spaced). 

 

 
 

Figure 66: Maximum and minimum principal stresses in fillet region on Ring (tooth 90)  for 

stage 1. 
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Figure 66 shows the maximum and minimum principal stresses in fillet region on the ring. 

The most interesting result consists in the evaluation of the hoop stress in region far away 

from the contact zone. Figure 67 clarify that the ring ovalization causes hoop stresses on the 

ring between planets. The small bump in Figure 66 between peaks corresponds to step of 

analysis at which the hoop effect occurs on tooth 90.   

 

 
Figure 67: Ovalization of the first stage ring and locations of the hoop stress. 

 

It is very important to control the value of the hoop stress especially when the ring thickness 

is thin. When the ring is very thin, such as in aeronautical applications, the peak in the hoop 

stress can become higher then the peak due to bending effect, and can causes unexpected 

failures.   

In this particular application, an additional external rim is modeled to simulate the constraints 

of the ring. In order to give the model the exact boundary conditions, the Young’ modulus of 

this rim is much higher then the ring. This rigid effect limits the peak value of the hoop 

stresses as shown in Figure 66. 

2.6.3 Displacement of planet 
 

Another important result, obtained through the planetary model, is the displacement of planets 

with respect to the theoretical position. The radial and tangential displacement of the center 

position due to deformation is calculated for each step of the analysis. Displacements take 

also into account the effect due to the stiffness matrix type bearings included in the model.   

For example Figure 68 show the tangential displacement of planet 1 of the second stage and 

the relative spectrum. 
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It is very interesting to underline that the tangential displacements spectrum show harmonics 

which depend on both first and second stages mesh frequencies. 

  

 
Figure 68: Displacement along tangential direction and spectrum of  Planet 1 of stage 2. 

 

 

Figure 69: a)Rotation and spectrum of Planet 1 of the stage 2. 

 
Figure 69 shows the same effect on the planet also for the rotational degree of freedom. 
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2.6.4 Bearings reactions 
 
Since all bearings in the system are modeled, the value of the reactions at their locations can 

be evaluated. Figure 70 shows reactions exerted by the bearing, which connects planet 1 and 

the carrier for the first stage. The tangential and radial reactions are plotted with respect to the 

system rotation. The relative spectra show periodicity depending from the first and second 

stage mesh frequencies: 

 

Figure 70: a) Bearing reaction force along carrier tangential direction on Planet 1 of stage 1 

and its spectrum; b) Bearing reaction force along carrier radial direction on Planet 1 of  

stage 1 and  its spectrum. 
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2.6.5 General deformation 
 
As final result, some pictures of the magnified deformed shape of the two rings are presented 

and compared with respect to the undeformed system. 

 

 
a) 

 
b) 

 
c) 

Figure 71: Ovalization of the rings: a) Undeformed shape; b) Deformed shape for ring of 

stage 1; c) Deformed shape for ring of stage 2. 

 

Two main effects can be seen: 

1. The typical ovalized shape of the two rings depends on the different number of planet 

and hoop stresses are visible between planet locations for both rings. 

2. The deformed shape is not perfectly symmetric with respect to the rotation axis. The 

reason of this behavior are the direction of the line of action between planets and rings 

and the phase angle between each planets (planets are not equally spaced).   
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Chapter 3  
 

The present chapter is concerned with vibration problems in a spur gears pair. A single degree 

of freedom oscillator with clearance type non-linearity is considered. Such an oscillator 

represents the simplest model able to analyze a single teeth gear pair, neglecting: bearings and 

shafts stiffness; multi mesh interactions. Some test cases considered in the following sections 

represent an actual gear pair that belongs to a gear box of an agricultural vehicle; such gear 

pair gave rise to noise problems. 

The main gear pair characteristics (mesh stiffness and inertia) are evaluated after an accurate 

geometrical modeling and a finite element analysis, including contact mechanics. Values for 

the mesh stiffness are evaluated for different positions along one mesh cycle and a Fourier 

expansion of the time varying stiffness is carried out. The gear modeling includes the 

presence of manufacturing errors. 

The dynamical model presents a piecewise linear periodic stiffness and a constant viscous 

damping. A direct numerical integration approach and a smoothing technique have been 

considered to obtain the dynamic scenario, following periodic responses and detect 

instabilities and dynamic bifurcations.  

3.1 Brief review 
 
The problem of gear noise has been intensively studied in the past; however, recently the 

interest about this problem grew because of great restrictions in the laws regarding noise level 

and the increase of international competition with particular attention to automotive. One of 

the most important vibration and noise sources is the transmission error that excites the 

gearbox, the gearbox surfaces, and connected components. This results in noise radiated by 

the external box. Figure 72 shows noise path on a gears unit with bearings and housing. 

 
Figure 72: Noise path in gear transmission. 
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Despite the main strong interaction between noise and static transmission error has been 

clearly proved (Chung et al., 1999), number of experiments on gear systems has shown that 

several nonlinear phenomena occur when the dynamic transmission error is present: multiple 

coexisting stable motions, sub and super harmonic resonances, fold bifurcations, long period 

subharmonic and chaotic motions have been clearly demonstrated experimentally (Kahraman 

and Blankenship, 1997). Even though there is a general agreement about the nature of the 

phenomenon, the current understanding of gear vibration remains incomplete. 

 

In the dynamic analysis of a gear system, an important role is played by the load conditions. 

Two main phenomena are described in literature (Dudley and Townsend, 1996), rattle and 

whine. Rattling occurs at low load condition while whine is related to higher loads and speeds 

(Pfeiffer and Kunert, 1990). 

The literature  suggests that many different models have been developed in the past sixty 

years. In effect the first mass-spring approach to gear dynamics was to created by Tuplin in 

1953 (Tuplin, 1953) and intensive studies were conducted by Harris (Harris, 1958), Munro 

(Munro, 1962) and Gregory (Gregory et al., 1963-1964) in the sixties. An interesting 

literature overview can be found in (Ozguven and Houser, 1988), where the mathematical 

models used in gear dynamics were classified by considering: the evaluation of simple 

dynamic factor; tooth compliance; gear dynamics; geared motor dynamics; and torsion 

vibration. The previous paper shows how the interest on gear vibrations grew up continuosly 

from the seventies. 

Important papers were published by Hsu and Cheng (1974), Benton and Seireg (1978) and 

Mark (1978). The first two papers concentrated their attention on the steady state response of 

a spur gear system to detect the effect of parametric excitations on resonances and 

instabilities. On the other hand Mark (1978) focused on the harmonic components of the static 

transmission error. 

In the eighties important contributions were given by Bahgat et al. (1983), who presented a 

dynamic procedure based on Hert’z impact formula for two cylinders in contact, by Yang et 

al.  ((Yang and Sun, 1985), (Yang and Lin, 1987)), who proposed two different models to 

take into account energy dissipation, hertzian damping and tooth friction, and by Umezawa et 

al. ((Umezawa et al., 1984-a), (Umezawa et al., 1985-b), who developed approximated 

equation to simulate rotational vibrations of both spur and helical gears. 
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In the last twenty years the most of dynamic models were focused on non-linear aspects. 

Kahraman and Singh (1990) considered the effect of backlash and time varying mesh stiffness 

using harmonic balance method and digital simulation. A similar model was developed by 

Theodossiades and Natsiavas (2000) who predicted chaotic behavior by means of numerical 

integration: such intermitted chaos and boundary crises. Ozguven (1991) extended the non 

linear spur gear model considering both shaft and bearing dynamics. Cai and Hayashi (1994) 

proposed a linear approximation for a pair of spur gears and compared the analytical solution 

with the numerically calculated result by the nonlinear equation. Amabili and Rivola (1997) 

obtained a continuous closed form solution for any rotational speed and computed the 

transition curves, stable and unstable regions, by means of the Hill infinite determinant. 

Parker et al. (2000-b) studied the nonlinear dynamic response of a spur gear pair using a semi-

analytical approach and two single degrees of freedom models. Andersson and Vedmar 

(2003) studied the dynamics of helical gears including the contribution of elliptic distributed 

tooth load. 

   

All previous papers agree in considering the following sources of vibrations for gears system: 

torsion resonance, impulsive or cyclic fluctuations in drive torque, gear mesh transmission 

error, local component vibration responses and fluctuations in the output torque demand. The 

concept of a vibrating system made of two gears is generally modeled through two wheels 

linked by the teeth mesh stiffness. In its simplest form, this model can simulate the classical 

linear resonance, i.e. the resonant frequency of the system. However, more complex 

phenomena such as parametric instabilities can be an important source of noise.   

In the present chapter a single degree of freedom oscillator with clearance type non-linearity 

simulates the dynamics of a simple spur gear pair. The model takes into account a time 

variable mesh stiffness and a constant viscous damping. Bearings and shafts stiffness are 

neglected. The main gear pair characteristics (mesh stiffness and inertia) have been evaluated 

after an accurate geometrical modeling and a finite element analysis, including contact 

mechanics. Values for the mesh stiffness are evaluated for different positions along one mesh 

cycle and a Fourier expansion of the time varying stiffness is carried out. Backlash is also 

modeled by means of a smoothing technique. This approach is able to approximate the 

piecewise linear displacement function, typical for systems with clearance. A random 

technique capable to evaluate composite deviation from a perfect involute profile according to 

manufacturing process quality is also given. Some simple case studies are considered in order 

to analyze the effect of manufacturing processes and profile modifications, on the dynamic 
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behavior of the spur gear. An adaptive step-size numerical algorithms is considered. The 

accuracy of the direct numerical integration of the non-smooth system is checked by means of 

comparisons with the existent literature and the efficiency of the integration algorithms is 

evaluated.  

Semi-amplitude/frequency and bifurcation diagrams of Poincaré maps are given in order to 

show the effect of variable mesh stiffness and deviation from the perfect involute profile on 

dynamic behavior. 

3.2 Equation of Motion 
 
The theoretical model considers the spur gear pair as a single degree of freedom lumped 

system. Each gear is represented by a rigid disk coupled along the line of action through a 

time varying mesh stiffness k(t) and a constant mesh damping c (see Figure 73).  

 
Figure 73: Dynamic spur gears model. 

 

Diameters of disks are base gear diameters dg1 and dg2 ; the angular position of the driver tooth 

wheel (pinion) is θg1, while the angular position of the driven wheel (gear) is θg2; the rotary 

inertia are Ig1 and Ig2; the driver torque is Tg1(t), while the breaking torque is Tg2(t). Shafts and 

bearings are supposed to be rigid. A time varying excitation e(t) is included in the model, 

which considers both manufacturing errors and profile modifications. When e(t) is positive a 

lack of material is considered (see Figure 74). 

A backlash function is included in order to simulate clearances: 

1 2
1 2( ) ( ) ( ) ( )

2 2
g g

g g

d d
f t f t t e tθ θ

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
 (3.2.1)
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Figure 74: Manufacturing errors: lack of material along the line of action. 

 

Equations of motions for the gear pair read: 

( )1 1 2 1 1 2
1 1 1 2 1 2 1( ) ( ) ( )

2 2 2 2 2 2
g g g g g g

g g g g g g g

d d d d d d
I c e t k t f e t T tθ θ θ θ θ

⎛ ⎞ ⎛ ⎞
+ − − + − − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (3.2.2)

 

( )2 1 2 2 1 2
2 2 1 2 1 2 2( ) ( ) ( )

2 2 2 2 2 2
g g g g g g

g g g g g g g

d d d d d d
I c e t k t f e t T tθ θ θ θ θ

⎛ ⎞ ⎛ ⎞
+ − + + + − + + = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (3.2.3)

where ( ⋅ )⋅ = d( ⋅ )/dt. 

The dynamic transmission error (DTE) x along the line of action is defined as in the 

following: 

1 2
1 2( ) ( ) ( )

2 2
g g

g g

d d
x t t tθ θ= −  (3.2.4)

Note that the actual transmission error will be x(t) - e(t). 

Using equation (3.2.4) and equations (3.2.3), equation (3.2.2) and (3.2.1) can be reduced to 

the following equation: 

( ) ( ( ) ( )) ( ) ( ( ) ( )) ( )e gm x t c x t e t k t f x t e t T t+ − + − =  (3.2.5)

where me is the equivalent mass: 

( ) ( ){ }2 2
1 1 2 2

1
4 4

e
g g g g

m
d I d I

=
+

 
(3.2.6)

  Tg is the equivalent applied preload: 

1 1 2 2

1 2

( ) ( )
( )

2 2
g g g g

g e
g g

d T t d T t
T t m

I I
⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.2.7)
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and we assume 2 1 2 1( ) /g g g gT t T d d= ; in the following Tg will be assumed constant. Equation 

(3.2.5) represents the relative dynamics along the line of action. 

Note that some authors (Barber et al., 2003) stated that since the stiffness of  the system 

changes with time, a conventional Newtonian statement of the equations of motion will 

generally lead to solutions that violate the fundamental principle of the mechanics “the work 

done by the external forces must be equal to the increase in total energy of the system”. 

Barber stated theat “to obtain a correct statement of the governing differential equations, it is 

necessary to allow for the local deformation of the components in determining the direction of 

the contact forces or tractions. This result, which is a generalization of the ‘‘Timoshenko 

paradox’’ (Timoshenko et al., 1974) applies even in small strain problems where the problem 

statement is conventionally referred to the undeformed configuration”. Despite this 

controversy the author also confirmed that, since the stiffness variation is periodic “We 

cannot emphasize too strongly that such equations of motion are therefore incorrect”. 

 

3.2.1 Modeling backlash: smoothing techniques 
 
When the clearance is present between two mating teeth, in a gear pair, non-linear phenomena 

take place (Kahraman and Blankenship, 1997). In the past years many author proposed 

different way in order to model the dynamic effect of clearance in gear systems. Wang 

(Wang, 1978) (Wang, 1981) defines a backlash function as the angular distance between 

reverse tooth flanks, while the forward active tooth flank remains in contact. Since backlash 

depends on gear angular position, the backlash function was considered as a time varying 

function. Cai (Cai, 1995) used a nonlinear model, where dynamic loads are forced to zero 

when the relative tooth pair is separated from each other. The most of authors (Yang an Sun, 

1985), (Kahraman and Singh, 1990), (Kahraman and Singh, 1992), (Blankenship and 

Kahraman, 1995), (Kahraman and Blankenship, 1996-a), (Amabili and Rivola, 1996), 

(Theodossiades and Natsiavas, 2000) consider a non-linear displacement function f(t) that can 

be used to describe the change of stiffness, which is related to the loosing of contact and the 

back side low impacts. Tomlinson and Lam (1984) mathematically shows an application to 

this technique also to asymmetrical clearance element.  

 

In this work the gear pair is considered equivalent to a simple 1dof oscillator (see Figure 75).  
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Figure 75: Equivalent gear model and backlash function. 

 

In this model the gear mesh has a constant clearance equal to 2b; the displacement function, 

for which concern the restoring force, assumes the following expression: 

( )
( ) ( ) ( ) ( )

( ) ( ) 0 ( ) ( )
( ) ( ) ( ) ( )

x t e t b x t e t b
f x t e t x t e t b

x t e t b x t e t b

− − − ≥⎧
⎪− = − ≤⎨
⎪ − + − ≤ −⎩

 (3.2.8)

The displacement function returns 0 when  ( ) ( )x t e t b− ≤  to simulate loss of contact between 

gears. 

Inserting equation (3.2.8) into equation (3.2.5) a second order piecewise linear time varying 

differential equation is obtained. 

( ) ( ( ) ( )) ( )( ( ) ( ) ) ( ) ( ) ( )
( ) ( ( ) ( )) ( ) ( ) ( )

( ) ( ( ) ( )) ( )( ( ) ( ) ) ( ) ( ) ( )

e g

e g

e g

m x t c x t e t k t x t e t b T t x t e t b
m x t c x t e t T t x t e t b

m x t c x t e t k t x t e t b T t x t e t b

⎧ + − + − − = − ≥
⎪ + − = − ≤⎨
⎪ + − + − + = − ≤ −⎩

 (3.2.9)

In order to apply a standard numerical approach to integrate the differential equation (3.2.9) 

some authors (see eg. Kim et al., 2003) suggest the use of smoothing techniques. The main 

idea is to approximate the piecewise linear displacement function given by equation (3.2.8) 

and illustrated in Figure 75 with a continuous function. This involve the substitution of a zero 

class ( )0C  function with a function of class ( )C∞ . 

For example, using a polynomial interpolation it is possible to approximate a given function f 

defined on a certain interval, imposing that the interpolation function assumes vaues of f for a 

set of M=n+1 points xi in this interval: the polynomial p(x) of degree n, reads. 
1 2

1 2 3 1( ) ...n n n n
n np x p x p x p x p x p− −

+= + + + + +  (3.2.10)

The most common techniques calculate the polynomial coefficients pi such as the following 

quantity is minimized: 
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( )
2

1

M

i i
i

u u
=

−∑  (3.2.11)

where: 
1 2

1 2 3 1( ) ...n n n n
i i i i i n i nu f x p x p x p x p x p− −

+= = + + + + +  (3.2.12)

200 equispaced samples are calculate for equation (3.2.8) with a backlash value of 2b=2 in 

order to check the behavior of polynomial interpolation with respect to the backlash function. 

Figure 76 and Figure 77 plot the polynomial approximated function when different degree of 

interpolation functions are used. Low values of the degree yield to bad approximation of the 

backlash function both inside and outside the non contact domain. Using a higher degree, 

yields to good approximation except fro the discontinuity points and the boundaries of the 

domain. 

 

a) 
 

b) 

Figure 76:Backlash polynomial interpolation functions: a) Degree 21; b) Degree 21 (zoom). 

 

 
a) 

 
b) 

 
c) 

Figure 77:Backlash polynomial interpolation functions: a) Degree 61; b) Degree 61 (zoom); 

c) Degree 61 (zoom on discontinuity); 

 

For example the percentage of error at point x=1 is around 0.8% when the degree of the 

polynomial function is 61. Higher value of the degree yields similar behaviors with values of 

percentage error not admissible in gear dynamics simulations.  

Kim et al. (2003) suggests the following smothering functions: 



Chapter 3 

 
110 

 

1. Arc-tangent type 

( ) arctan( )f x xα=  (3.2.13)

 

2. Hyperbolic tangent type 

( ) tanh( )f x xα=  (3.2.14)

 

3. Hyperbolic-cosine type 

1( ) ln(2cosh( ))f x xα
α

=  (3.2.15)

 

4. Quintic spline type (here /y x ε=  and /bε α= ) 

2 4(3 6 1 ), 1
( ) 8

, 1

y y y
f x

x y

ε⎧ + − ≤⎪= ⎨
⎪ >⎩

 (3.2.16)

where α is the shape parameter. 

 

Kim also concludes that: 

1. All functions (such as hyperbolic tangent and  arc-tangent types) can be employed in 

both direct time domain numerical integration and semi-analytical methods though 

these must be handled with some care; 

2. Hyperbolic-cosine type, when coupled with friction or impact damping, cannot be 

applied because of a singularity involved; 

3. The quintic spline type localized smoothening function provides advantages only in 

semi-analytical methods. 

 

In the following only the first two smothering functions are discussed and the application of 

each function to the backlash function (3.2.8) is described. 

Let us consider the following backlash function: 

1 2( ) ( ) ( )f f fχ χ χ= +  (3.2.17)

where: 

( ) ( )x t e tχ = −  (3.2.18)

f(χ) is assumed composed by f1(χ) and f2(χ) which represent the left and right side of the 

backlash function.  
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Arc-tangent type 

According to the arc-tangent type approach, f1(χ) and f2(χ) are expressed in term of the arc-

tangent functions (3.2.13). 

A simple normalization term 1/π  allows to transform  the codomains of the function f1(χ) 

from [ ]/ 2; / 2π π− +  to [ ]1/ 2; 1/ 2− + . Subsequently two translations shift the asymptotes to 

y=0 and y=1 and the symmetry axis to χ = b, the result is multiplied by (χ-b) and a shape 

parameter α is inserted to controls the accuracy of the approximation. A similar procedure is 

applied to function f2(χ). Equation (3.2.17) becomes: 

1 2( ) ( ) ( )

1 1 1 1( ) arctan[ ( )] ( ) arctan[ ( )]
2 2

f f f

b b b b

χ χ χ

χ α χ χ α χ
π π

= + =

⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫− + − + + − +⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦

 (3.2.19)

Figure 78 shows f1 and a f2 when 2b=2 and e(t)=0: 

 

 
Figure 78: Arc-tangent approach: plots of f1(χ) and f2(χ). 

 
Figure 79 shows the effect of the shape parameter α on the smoothing function in the 

proximity of the discontinuity point for the same case of Figure 78. A value of α =108 

drastically reduce the percentage of the error and allows enough accuracy for dynamics 

numerical simulation.  

 
Figure 79: Effect of α on arc-tangent function: a) α=103; b) α=106. 
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Hyperbolic tangent type 

According to the hyperbolic tangent type approach, f1(χ) and f2(χ) are expressed in term of the 

hyperbolic tangent functions (3.2.14). 

Adding 1 to the first term of equation (3.2.17) and multiplying by 1/ 2  allows to transform  

the codomains of the function f1(χ) from [ ]1; 1− +  to [ ]0; 1+ . Subsequently a translations of b 

shift the symmetry axis to χ = b. The obtained function is multiply by (χ-b) and a shape 

parameter α is inserted to controls the accuracy of the approximation. A similar procedure is 

applied to function f2(χ). Equation (3.2.17) becomes: 

{ } { }

1 2( ) ( ) ( )
1 1( ) 1 tanh[ ( )] ( ) 1 tanh[ ( )]
2 2

f f f

b b b b

χ χ χ

χ α χ χ α χ

= + =

⎡ ⎤ ⎡ ⎤− + − + + + − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (3.2.20)

Figure 80 shows a plot of the two obtained function when 2b=2 and e(t)=0: 

 

 
Figure 80: Hyperbolic tangent approach: plots of f1(χ) and f2(χ). 

Figure 81 shows the effect of the shape parameter α on the smoothing function in the 

proximity of the discontinuity point.  Even for the hyperbolic tangent approach, a value of α 

=106 drastically reduce the percentage of the error and consents enough accuracy for 

dynamics numerical simulation.  

 

 
Figure 81: Effect of α on hyperbolic tangent function: a) α=103; b) α=106. 
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Comparison of smoothing functions 

In order to choose the best smoothing function for the spur gear application, some detailed 

comparisons are performed. Due to symmetry, only the right side of the backlash function f1 

is taken into account. 

Figure 82 shows a first comparison for 2b=2, e(t)=0 and α=10. Functions are plotted in 

proximity of χ = 1. The blue line represents the approximated piece wise linear function 

described in (3.2.8). The comparison shows that the hyperbolic tangent approach has better 

accuracy with respect to the arc-tangent function. Similar results are obtained when α is 

increased. 

 
Figure 82: Comparison between smoothing functions (α=10): hyperbolic tangent (red), arc-

tangent (green), piece wise linear (blue). 

 

A further investigation analyzes the error distribution Δf1 with respect to χ between the 

approximated piece wise linear function and the two smoothing functions for the previous 

case but with different values of α. 

 
Figure 83: Difference between smoothing functions and the approximated backlash function: 

α=104: hyper tangent (red), arc-tangent (green). 
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Figure 84: Difference between smoothing functions and the approximated backlash 

functionfor α=106: hyper tangent (red), arc-tangent (green). 

 
Figure 83 and Figure 84 allows to write the following considerations: 

1. Increasing the shape coefficient α results in a drastically reduction of the error 

distribution; 

2. An error magnitude lower then 610−  is reached for α=106 and guarantees enough 

accuracy in the numerical simulation for both smoothing function; 

3. The hyperbolic function has peaks value of the error close to the discontinuity and 

decrease to zero far away from it; 

4. The error distribution for the arc-tangent smoothing function has similar behavior to 

the hyperbolic tangent function close to the discontinuity but a completely different 

asymptotic behavior far away from it; 

5. For a current value of the shape parameter α, the hyperbolic tangent function 

approximates the piece wise backlash function better then the arc-tangent function. 

 

The analysis of the maximum amplitude of Δf1 with respect to χ shows that increasing α 

results in decreasing of the maximum of the error distribution. Furthermore the following 

relationships can be obtained: 

 

for hyperbolic tangent: 13 17ErrMaxα ⋅ = ÷   (3.2.21)

 

for arc-tangent: 28 32ErrMaxα ⋅ = ÷   (3.2.22)

 

where { }1maxErrMax f
χ

= Δ
∈

. 
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Relationships (3.2.21) and (3.2.22) estimates that the same error accuracy can be obtained if 

the value of α used for the arc-tangent function is 2-5 time times the value of α used for the 

hyperbolic tangent function. 

A final analysis takes into account the first derivative of the smoothing functions 1f .    

 
Figure 85: Comparison between first derivative of the  smoothing functions for α=104: hyper 

tangent (red), arc-tangent (green). 

 

Figure 85 shows that Gibbs-like phenomena occurs for the hyperbolic tangent smoothing 

function at the point of discontinuity (for example for α=104). This results in a better behavior 

of arc-tangent function for what concern the first derivative. Since the current gear pairs 

model does not include any explicit effect depending on the first derivative of the backlash 

function, this effect can be neglected. 

The full smoothing equations are presented including profile errors: 

( ) ( ) ( ) ( ){ ( ) ( ) }1( ) ( ) ( ) ( ) arctan ( ) ( ) ( ) ( ) arctan ( ) ( )f t x t e t x t e t b x t e t b x t e t b x t e t bα α
π

⎡ ⎤ ⎡ ⎤= − − − + − + − − − − −⎣ ⎦ ⎣ ⎦
 (3.2.23)

 

{ } { }1 1( ) ( ( ) ( ) ) 1 tanh[ ( ( ) ( ) )] ( ( ) ( ) ) 1 tanh[ ( ( ) ( ) )]
2 2

f t x t e t b x t e t b x t e t b x t e t bα α⎡ ⎤ ⎡ ⎤= − − + − − + − + + − − +⎣ ⎦ ⎣ ⎦
 (3.2.24)

In the following, equation (3.2.24) is selected as smoothing function with a value of α of 108. 

 

3.2.2 Mesh stiffness reconstruction 
 
The unsteady component of the relative angular motion of pairs of meshing gears is well 

recognized as one of the main source of gear noise. Since 1938 the concept of transmission 

error was used to describes this displacement-type vibration excitation (Walker, 1938), 
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(Harris 1958), (Gregory et al., 1963-1964). Mark (1978) described the basic theory to provide 

analytical expression of the static transmission error which was considered the main 

parameter to control the dynamic of gears. Since the number of teeth pairs in contact within 

the mesh cycle changes, with the rotation of the gear, the mesh stiffness varies accordingly. 

For this reason transmission error does not have a single value but must be considered as a 

continuous variable during gears rotations. 

The described effect generates a continuous variation of the deflection of the teeth and 

therefore of the angular transmission error during gears rotation which results in noise 

emission. In order to prove the relationship between transmission error and gear noise, many 

experiments was conducted in the last twenty years. Chung et al. (1999) found a direct 

proportional relationship between measured transmission error and generated sound levels 

emitted by an actual gears system. 

In the previous sections the connection between static transmission error and mesh stiffness 

has been shown.  For this reason a 2D finite elements analysis is applied to calculate stiffness. 

Calyx® (see previous chapters) is used to perform the analysis. If all teeth are equal in both 

pinion and gear, the static transmission error is periodic with the period of mesh. Therefore, 

the static transmission error can be easily calculated using a FE approach which can be able to 

analyze n different relative position of the gears within a mesh cycle. 

 
Figure 86: Mesh of the fem model. 

 
The stiffness k is evaluated for each position by using equation (2.2.15). Since the stiffness is 

periodic with the mesh frequency, its analytical formulation can be obtained by means of : 

0( ) cos( )i m ii
k t k k i tω ϕ= + −∑  (3.2.25)

where: 
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( )0 0 ; 2 ; argi i i i ik c k c c cϕ− −= = =  (3.2.26)

 

( )
1

0

h

n
ji x

i h
h

c f x e
−

−

=

= ∑  (3.2.27)

where j is the imaginary unit, ( )hf x  represents the stiffness value at the sample points xh .All 

terms ci are obtained by means of the Discrete Fourier Transform algorithm. Since ki  must 

become real values, c-i results the complex conjugate of ci. 

Note that it is preferable to have an odd number of sample n within the mesh cycle and the 

n+1 sample must correspond to the end of the mesh cycle. In this way the number of 

harmonics terms in (3.2.25) is equal to (n-1)/2.  

a) b) 

 
c) 

Figure 87: Comparison between analytical function of k(t) (green) and numerical values of k 

(-*- black): a) 7 samples and 3 harmonics; b) 51 samples and 25 harmonics; c) 15 samples 

and 7 harmonics. 
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Figure 87 shows analytical reconstructions of the mesh stiffness for case study 1 (see Table 2) 

with different parameters. A small number of samples (Figure 87 a)) results in a coarse 

reconstruction while a large number (Figure 87 b)) can cost computational effort. A good 

compromise (Figure 87 c)) is to select 15 positions within the mesh cycle for the Finite 

Element analysis and 7 harmonics for the stiffness analytical reconstruction.  

 

3.2.3 Composite profile errors 
 

Any process used to manufacture gears results in a certain amount of deviation from the 

theoretical involute profile. Furthermore the literature (see following sections), suggests tip 

and root relief to reduce the vibration of the system for a designed nominal torque. This 

profile modification introduce additional deviation from the perfect involute profile.  

Many authors identify in manufacturing errors a possible source of rotational vibration. For 

example, Nielsen (1960) proposed simple analytical equations for angular errors in gears, and 

provided the theoretical effect of seven key factors that can have influence on angular 

accuracy. The first attempt to consider geometrical imperfections have been made by Walker 

(1938). Walker mostly concentrates his attention on the effect of intentional profile 

modification, applied to compensate tooth deflection. In 1969 Munro (Munro, 1969) 

described how geometrical imperfections in gears can alter significantly the ways in which 

load and motion are transmitted through the analysis of the transmission error. Umezawa et al. 

(1984-b, 1985-a) extended the analysis to understand the influence of pressure angle, normal 

pitch, waved profile errors on the rotational vibrations of spur gears. A similar work was 

proposed by Velex and Maatar (1996), with a comprehensive mathematical model, which was 

able to verify the influence of shape deviation and mounting errors for a spur or helical gears 

pair.  

A particular transfer function approach was proposed by Mark (1979). His model was able to 

separate the effects of gears tooth errors and gear design parameters and  give detailed 

description of how different classes of error affect different regions of the static transmission 

error spectrum. 

The importance of considering the manufacturing errors in gears dynamics is proved by the 

possibility of predicting gear quality by means of vibration analysis (Ognjanovic and Subic, 

1993) and by the number of vibrational models in which a profile errors term is included 

(Hayashi and Hayashi, 1976) (Cai and Hayashi, 1994), (Kahraman and Singh, 1990). 
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In the present section an iterative routine is developed to create a random profile within 

specified tolerance values. The estimation of an actual profile errors, is generally measured 

using sophisticated and expensive experimental rigs; therefore, few data are available. 

In order to simulate profile errors it is important to define the profile tolerance (also referred 

to involute tolerance) which is the permissible amount of profile variation with respect to the 

theoretical involute profile. Since the profile geometry can be modified using tip or/and root 

relief, a particular chart, called “K” chart is commonly used to specify the tolerance values 

along the tooth profile projected on the line of action. An example of “K” chart with both tip 

and root parabolic relief is shown in Figure 88. The chart provides a tolerance value for each 

single profile segment with respect to a coordinate (roll angle or diameter) along the profile. 

Three segments are visible: the tip relief segment starting at the start roll angle tip ϕt,s with 

tolerance Δt , the root relief segment included between the start roll angle root ϕr,s and the end 

roll angle root ϕr,e with tolerance Δr and the involute segment with tolerance Δi. 

 
Figure 88: Example of “K” chart. 

 

The quality inspection accepts tooth profile when the measured tooth profile lies between the 

lower allowance curve and the upper allowance curve. For very accurate application a further 

restriction on profile curvature is also imposed. Note that at least one measured point must lie 

on the lower allowance curve to avoid the superimposition of pitch error. 
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A particular manufacturing process quality can be simulated, according to “K” chart, in case 

of both linear or parabolic profile modification by generating a random profile which fit the 

“K” chart. Figure 89 shows an example of random generated profile fitting tolerance in case 

of a parabolic tip relief..  

 

 

Figure 89: Random generation of pinion and gear profile according to “K” chart parabolic 

tip relief; (blue) random profile; (red) Fourier expansion reconstruction. 

 

The deviation from the actual involute profile is provided with respect to normalized roll 

angle ( 360( )nroll roll roll pϕ ϕ ϕ= ), where φroll is the roll angle and φroll p is the difference between 

the values of the roll angle at the lowest and the highest point of contact along the tooth 

profile (Dudley and Townsend, 1996). 

Positive values of deviation means lack of material. The same approach is repeated to 

generate random profiles for all pinion and gear teeth. 

An analytical formulation of the shape of each tooth profile error is developed by means of a 

Fourier expansion (see Figure 89). The analytical formulation allows to evaluate the 

composite profile error, during a mesh cycle, as a sum between deviation on meshing teeth, 

according to the transmission ratio. This approach is repeated 1 2Z Z×  times in order to 

perform a complete fundamental rotation (Z1 and Z2 are number of teeth on pinion and on 

gear). The fundamental rotation is the rotation required for the same tooth pair to reach 

contact in the same position. During such rotation all possible relative teeth contact 

combinations take place, then the process is repeated periodically. The composite profile error 

is approximated again by means of a Fourier series: 
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( ) cos( )i m ii
e t E i tω γ= −∑  (3.2.28)

where: 1 2/( )m m Z Zω ω=  and Ei and γi are amplitude and phase values evaluated through the 

FFT algorithm. 

The previous methodology is tested by means of the “K” chart parameters described in Table 

25: 

 

  Pinion Gear 
 Involute    
  Tolerance [mm] 0.008 0.008 
    
 Tip relief    
 Type of modification Linear Linear 
 Roll angle at start of relief [Deg] 30.1569 29.2127
 Magnitude of relief [mm] 0.016 0.018 
 Tolerance [mm] 0.02 0.02 
    
 Root relief    
 Type of modification Linear Linear 
 Roll angle at start of relief [Deg] 23.4706 25.2079
 Roll angle at end of relief [Deg] 14.4334 20.5764
 Magnitude of relief [mm] 0.016 0.018 
 Tolerance [mm] 0.02 0.02 
    
 Crowning    
  Magnitude [mm] None None 

Table 25: Example of “K” chart parameters. 

 
Figure 90 shows a simulation of the manufacturing error for the first tooth of the pinion and 

of the gear. Eighteen measurements are considers from the SAP radius to EAP radius and the 

black piece wise line represents simulates a possible machine measurement process. Trough 

the Fourier analytical formulation ten points are used to calculate the combined profile 

deviation from involute profile (blue line in Figure 90). Note that the extension of the blue 

line, with respect to roll angle, does not always coincide with the extension of the black line. 

This is due to two reasons: 

 

1. The SAP radius can be different to the radius of the first point of contact on the tooth 

profile; 

2. In the simulation the combined error for a single pair of teeth in contact, is calculated 

in a mesh cycle, therefore the last point considered the HPSTC.  
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Figure 90: Simulation of manufacturing errors according to “K” chart. 

 
Once the complete combined profile errors is calculated for 1 2Z Z×  different mesh cycles, the 

FFT algorithm provides the value of coefficients and phases for equation (3.2.28). The 

approach is similar to the one used with equations (3.2.25), (3.2.26) and (3.2.27).   

 

Figure 91: FFT spectrum of the combined profile error. 

 

Figure 91 shows an example of the spectrum obtained from a composite profile error for a 

gear pair with profile errors. In the present plot, all frequencies are normalized according to 

the mesh frequency ωm. The effect of profile errors results in a excitation having ωm has 

fundamental frequency. 

 

 

 



Chapter 3 

 
123 

3.2.4 Back-side contact 
Another important source of noise in spur gears is the possibility of having impact between 

the gear flank. When the relative amplitude of vibration between mating gears becomes high, 

a loss of contact and impacts between the mating flank can occur. A typical example is the so 

called “gear rattle”, a noise phenomena which takes place when gears are rotating with low 

applied torque (Pfeiffer and Kunert, 1990). Usually, in modeling  gear rattle, an important role 

is played by the amount of dissipated energy when the impact occurs (Azar and Crossley, 

1977), (Luo, 2005). 

According to literature (Kahraman and Singh, 1990) two are the possibilities when impact 

effects are considered: 

1. Single side impact (front side contact): when impact occurs between active mating 

flanks; 

2. Double side impact (also referred as back-side contact): when impact occurs on the 

non active flanks of a mating teeth pair. 

3.  

Figure 92 illustrates the meaning of the front side contact and back side contact with respect 

to gears rotation. In normal condition the pinion transmits motion to the gear with a contact 

point moving on the line of action. When a back-side contact occurs the line of action change 

direction instantaneously according to the inverse motion (see Figure 93). Furthermore the 

change of the direction of the line of action can results in a different number of teeth pairs in 

contact. For example it is possible that during direct motion only one pair of teeth is in contact 

while during inverse motion two are the number of teeth pairs in contact. 

 

 
Figure 92: Contact between gears: a) front side contact; b) back-side contact. 
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Despite some authors predict the possibility of both typology of impact (Kahraman and Singh, 

1990), no double side have never been recorded in a test facility for high speed spur gears 

system (Kahraman and Blankenship, 1997).  

Nevertheless, the present work the possibility of back-side contact is taken into account 

through a change of the instantaneous stiffness value. 

 

 
Figure 93: Different lines of action according to teeth contact. 

 

The following assumptions are considered: 

1. The gears are considered perfectly rigid and no manufacturing, mounting and 

geometrical errors are included; 

2. The backlash is evaluated through equation  (1.2.13); 

 

Let us consider  Figure 93. Ico and Fco are respectively the first and the last contact point 

along the line of action of the direct motion. Icno and Fcno are the equivalent points along the 

line of action of the inverse motion. If A is a current contact point during direct motion and 

back-side contact occurs, B will become instantaneously the new contact point. 

Points A and B will be referred in the following as non-homologous points. Homologous 

points have the property of having the same mesh stiffness value, despite the direction of the 

line of action. Example of homologous points are Ico and Fcno and Fco and Icno..   
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Figure 94: Schematic representation of the stiffness during direct and inverse motion. 

 
Figure 94 shows a schematic representation of homologous points with respect to a generic 

stiffness curve considering direct motion;  P.P. indicates the position of the pitch point.  

Since point A and B are not homologous points, the projection of the points on the mesh 

stiffness curve yields to different stiffness values ( )dk A  and ( )nok B .  

Simple kinematics consideration yield to calculate that A and B have the same speed along 

the relative line of action: 

A Bν ν=  (3.2.29)

This relationship stands that the contact points for direct motion and inverse motion, are 

moving on the corresponding contact lines with the same speed. This allows to evaluate the 

value of the back-side contact mesh stiffness, once it is know the stiffness curve of the direct 

motion.  The mesh stiffness of the front side contact ( )dk t  (note that ( )dk t  is equivalent to 

equation (3.2.25)) and the correspondent mesh stiffness in case of back-side contact ( )nok t  are 

related trough a simple transformation T.  
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( ( )) ( ( ))no d dk T k kθ θ ϕ= = − +  (3.2.30)

 

This transformation is composed of a translation and an inversion with respect to a point. The 

results of the transformation of the stiffness curve of the direct motion ( )dk t  produces a new 

stiffness function for the inverse motion ( )nok t . This two function have a different phase ϕ 

and a inverse orientation of the x-axis. 

 
Figure 95: Evaluation of the phase angle ϕ. 

 
The evaluation of the phase angle ϕ  is performed through simple geometrical considerations. 

Figure 95 shows as A and B becomes homologous points when the centre line coincides with 

the symmetry axis of a vane of the pinion. This configuration is described in Figure 94 as the 

point of inversion for the transformation T. The value of the phase can be calculated as 

follow: 

1

1
2 vain

b

s
r

ϕ =  (3.2.31)

where svane is the thickness of the pinion vain. 

Once the point of inversion and the phase angle is calculated the new stiffness function can be 

described analytically as follows: 

 

0
1

1( ) cos( ( ))
2no i m i vanei

b

k t k k i t s
r

ω ϕ= + − − +∑  (3.2.32)
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Figure 96: Comparison between mesh stiffness: direct motion (black), inverse motion (blue).  

 
Figure 96 shows an example of comparison between the stiffness curve ( )dk t  and the 

obtained ( )nok t  along a mesh cycle. Note that if back-side contact occurs in point A, the 

difference between the two stiffness value (A compared with B) is almost equivalent to the 

peak to peak value. This effect cannot be neglected for an accurate dynamic simulation. 

 

According to the previous consideration the equation of motion defined in (3.2.5) becomes: 

  
1 2( ) ( ( ) ( )) ( ) ( ( ) ( )) ( ) ( ( ) ( )) ( )e d no gm x t c x t e t k t f x t e t k t f x t e t T t+ − + − + − =  (3.2.33)

 

where f1 and f2 depends on the selected smoothing function (see relative sections). 
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3.3 Normalization 
 
A dimensionless form of equation (3.2.5) is obtained by letting:  

 

( )

0
2; ; ; ; ;

2

( ) ( ) 1 ( ) ( ) 1
( ) ( ) ( ) ( ) 0 ( ) ( ) 1 ;

( ) ( ) 1 ( ) ( ) 1

g
n n g

e e n e n

Tk c x et T x e
m m bm b b

x e x e
x ef f x e x e

b
x e x e

ω ζ τ ω
ω ω

τ τ τ τ
τ τ τ τ τ τ

τ τ τ τ

= = = = = =

− − − ≥⎧
− ⎪⎛ ⎞ = − = − ≤⎨⎜ ⎟

⎝ ⎠ ⎪ − + − ≤ −⎩

 

(3.3.1)

 

and: 

 

2

1 2

; ( ) 1 cos ;

; ( ) cos

i m
i i ii

e n n

j m
j j jj

n

kk k t k i
m

E
E e E j

b Z Z

ω τ ϕ
ω ω

ωτ τ γ
ω

⎛ ⎞
= = + −⎜ ⎟

⎝ ⎠

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠

∑

∑

 (3.3.2) 

 

Equation (3.2.5) assumes the following form: 

 

( ) 2 ( ( ) ( )) ( ) ( ( ) ( )) gx x e k f x e Tτ ζ τ τ τ τ τ′′ ′ ′+ − + − =  (3.3.3) 

 

where ( ⋅ )’  = d( ⋅ )/dτ. 

 

Using smoothing techniques, the normalized backlash functions become: 

 

( ) ( ) ( )

( ) ( ) ( ){ ( ) ( ) }
1 2

1( ) ( ) ( ) ( ) 1 arctan ( ) ( ) 1 ( ) ( ) 1 arctan ( ) ( ) 1

f f f

x e x e x e x e x e

τ τ τ

τ τ τ τ α τ τ τ τ α τ τ
π

= + =

⎡ ⎤ ⎡ ⎤− − − + − + − − − − −⎣ ⎦ ⎣ ⎦

 (3.3.4)

 

( ) ( )

{ } { }

1 2( )
1 1( ( ) ( ) ) 1 tanh[ ( ( ) ( ) )] ( ( ) ( ) ) 1 tanh[ ( ( ) ( ) )]
2 2

f f f

x t e t b x t e t b x t e t b x t e t b

τ τ τ

α α

= + =

⎡ ⎤ ⎡ ⎤− − + − − + − + + − − +⎣ ⎦ ⎣ ⎦

 (3.3.5)

 

The back-side effect can be considered with the following equations: 
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,
, 2

,
, 2

1

; ( ) 1 cos ;

1; ( ) 1 cos ;
2

d i m
d i d i ii

e n n

no i m
no i no i i vanei

e n n b

k
k k t k i

m

k
k k t k i s

m r

ω τ ϕ
ω ω

ω τ ϕ
ω ω

⎛ ⎞
= = + −⎜ ⎟

⎝ ⎠
⎛ ⎞

= = + − +⎜ ⎟
⎝ ⎠

∑

∑

 (3.3.6)

 

Equation (3.2.33)  assumes the following form: 

 

1 2( ) 2 ( ( ) ( )) ( ) ( ( ) ( )) ( ) ( ( ) ( ))d no gx x e k f x e k f x e Tτ ζ τ τ τ τ τ τ τ τ′′ ′ ′+ − + − + − =  (3.3.7) 

 

Note that in the following chapter an important role will be played be the parameter ωn. This 

value will be referred as the natural frequency of the system described by equation (3.3.3) or 

(3.3.7). In effect it corresponds to the circular frequency of the relative the time-invariant 

linearized system. 

  

3.4 Perturbation solution 
 
Neglecting damping, backlash function, back-side contact effect and the transmitted load and 

introducing equation (3.2.25) into equation (3.2.5) yields to: 

 

0
1

cos( 0i m i
i

x k k i t xω ϕ
+∞

=

⎛ ⎞+ + + =⎜ ⎟
⎝ ⎠

∑  (3.4.1)

Where /i i ek k m= . 

 

Equation (3.4.1) is a second order differential equation with time depending coefficients, no 

exact closed form solutions are available. In this section the method of multiple scale is used 

in order to obtain an approximate solution, which furnishes instability regions of the system. 

The solution is expanded in power series of a small parameter ε; moreover, multiple time 

scales are introduced in order to consider fast and slow time variations (Nayfeh and Mook, 

1979). Following the procedure described by Nayfeh and Mook (1979) let introduce a set of 

new independent variable Ti (fast and slow scales) is introduced: 

 
2

0 1 2; ;T t T t T tε ε= = =  (3.4.2)
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The derivatives with respect to t become: 

2
0 1 2

2
2 2 2

0 0 1 1 0 22 2 ( 2 )

d D D D
dt
d D D D D D D
dt

ε ε

ε ε

= + +

= + + +
 (3.4.3)

 

where Di are partial derivatives respect to Ti.  

Let us expand now the solution x as power series of ε: 
2 3 3

0 0 1 2 1 0 1 2 2 0 1 2 3 0 1 2( , ) ( , , ) ( , , ) ( , , ) ( , , ) ( )x t x T T T x T T T x T T T x T T T Oε ε ε ε ε= + + + +  (3.4.4)

 

substituting equation (3.4.3) and (3.4.4) into equation (3.4.1), neglecting ϕi with i=1,..,4, 

yields to: 
2

00 0 0 0D x k x+ =  (3.4.5)

2
00 1 1 0 1 0 02D x k x D D x Px+ = − −  (3.4.6)

2 2
00 2 2 0 1 1 1 1 0 2 02 ( 2 )D x k x D D x Px D D D x+ = − − − +  (3.4.7)

2 2
00 3 3 0 1 2 2 1 0 2 1 0 3 1 2 02 ( 2 ) (2 2 )D x k x D D x Px D D D x D D D D x+ = − − − + − +  (3.4.8)

where P is:  

cos( ) cos(2 ) cos(3 ) cos(4 )m m m mP t t t tω α ω β ω γ ω= + + +  (3.4.9)

with: 

2 3 4
1

1 1 1
; ; ;k k kk

k k k
ε α β γ= = = =

 
(3.4.10)

Equations (3.4.5), (3.4.6), (3.4.7) and (3.4.8) are obtained equating the coefficients of ε0, ε1, ε2 

and ε3 to zero. The solution of equation (3.4.5) is: 

0 0
0 0 1 2 1 2 1 2( , , ) ( , ) ( , )n nj T j Tx T T T A T T e A T T eω ω−= +  (3.4.11)

where: 2
0 nk ω= , A  is the complex conjugate of A. Inserting equation (3.4.11) into (3.4.6) we 

have: 

0

0 0 0 0

0 0 0 0

2
0 1 0 1 1

( ) (2 ) (3 ) (4 )

( ) (2 ) (3 ) (4 )

2
1 (
2

) . .

n

m n m n m n m n

m n m n m n m n

j T

j T j T j T j T

j T j T j T j T

D x k x jD Ae

Ae Ae Ae Ae

Ae Ae Ae Ae C C

ω

ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω ω

+ + + +

− − − −

+ = −

− + + + +

+ + + +  

(3.4.12)

where C.C. means complex conjugates terms. 
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At ε1 level every harmonic generates two forcing terms whose frequencies are (nωm–ωn) and 

(nωm+ωn). 

The previous consideration allows to consider each harmonic contribution separately. 

 

Secular terms: 

 

In equation (3.4.12) the following secular term is identified: 
0

12 nj T
nj D Ae ωω−  (3.4.13)

such term gives rise to spurious divergent solutions and must be removed. Depending on the 

value of ωn four cases are possible:  

2 ;
m n n

m n

ω ω ω
ω ω
− =

→ =
 

2
;

m n n

m n

ω ω ω
ω ω

− =

→ =
 

3
2 ;
3

m n n

m n

ω ω ω

ω ω

− =

→ =
 

4

;
2

m n n

n
m

ω ω ω
ωω

− =

→ =
 

 

Case 1 

Eliminating secular terms gives: 

0 0( )
1

12 0
2

n m nj T j T
nj D Ae Aeω ω ωω −− − =  (3.4.14)

Assuming ωm = ωn+εσ, where σ is a detuning parameter, and D1A=A’ and considering that 

T1=εT0, equation (3.4.14) becomes: 

1
12 ' 0
2

j T
nj A Ae σω− − =  (3.4.15)

Since A is a complex number depending on T1, it can be express as follow: 

12
1 1( ) ( )

j T
A T B T e

σ

=  (3.4.16)

where B(T1) is complex function, equation (3.4.15) becomes: 

2 ' 0
2n n
Bj B Bω ω σ− + − =  (3.4.17) 

Equation (3.4.17) can be decomposed in its real and imaginary part: 

2 ' 0
2

2 ' 0
2

R
n I n R

I
n R n I

BB B

BB B

ω ω σ

ω ω σ

⎧ + − =⎪⎪
⎨
⎪− + + =
⎪⎩

 (3.4.18)

where B=BI+jBR. 

Assuming that ( ) 1
1 1 1( ) ( ) ( ) T

R IB T G T jG T eξ= +  we can write equation (3.4.18) in a matrix form: 
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1 00 2 02
2 0 1 00

2

n
n R R

n I I
n

G G
G G

ω σω
ξ

ω
ω σ

⎡ ⎤−⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥+⎢ ⎥⎣ ⎦

 (3.4.19)

System (3.4.18) and (3.4.19) are equivalent and the solution can be found imposing: 

1 00 2 02
2 0 1 00

2

n
n R

n I
n

G
G

ω σω
ξ

ω ω σ

⎛ ⎞⎡ ⎤−⎜ ⎟⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟+ =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎜ ⎟ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎢ ⎥+⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

 (3.4.20)

this equation has non trivial solution if the determinant of its matrix is equal to zero, which 

means: 

2 2 2
2

1 1
4 4 n

n

ξ ω σ
ω

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (3.4.21)

Instability occurs when ξ 2 > 0, i.e. when: 

2 21 0
4 nω σ⎛ ⎞− >⎜ ⎟

⎝ ⎠
 (3.4.22)

Remembering that ε=d1 and substituting 2m nω ωσ
ε
−

=   into (3.4.22) yields: 

1 1
0 0

0 0

2 2
2 2

m
k kk k

k k
ω− < < +

 
(3.4.23)

The same approach is applied to the cases 2, 3, and 4. 

 

Case 2 

In this case the detuning parameter σ is: 

2 2m nω ωσ
ε
−

=  (3.4.24)

which leads to the following instability region: 

1 1
0 0

0 04 4
m

k kk k
k k

ω− < < +
 

(3.4.25)

 

Case 3 

In this case the detuning parameter σ is: 

3 2m nω ωσ
ε
−

=  (3.4.26)

which leads to the following instability region: 
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1 1
0 0

0 0

2 2
3 36 6

m
k kk k
k k

ω− < < +
 

(3.4.27)

 

Case 4 

In this case the detuning parameter σ is: 

2 m nω ωσ
ε
−

=  (3.4.28)

which leads to the following instability region: 

1 1
0 0

0 0

1 1
2 28 8

m
k kk k
k k

ω− < < +
 

(3.4.29)

 

Case study 

The previous perturbation technique is applied to the case study 1 presented in Table 2. By 

means of the described finite element analysis the following results are obtained: 

Component Stiffness component [N/m] 

0k  9.9605 108 

1k  1.7820 108 

2k  3.4220 107 

3k  3.9132 107 

4k  1.8414 107 

Table 26: Stiffness component of case study 1 used  for the perturbation method. 

 

Table 27 shows the instability regions calculated for case study 1, using the stiffness values 

presented in Table 26: 
Case Instability region [rad/s] 

1 60297 65943mω< <  

2 31289 31831mω< <  

3 20833 21246mω< <  

4 15707 15853mω< <  

Table 27: Instability regions expressed on meshing frequency ωm. 

 
Considering that ( )1 160 / 2m Zω πΩ = , the instability regions are reported in Table 28 in terms 

of the driver gear velocity Ω1. 
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Case Instability region [rpm] ΔΩ1 [rpm] 

1 120564 22489< Ω <  1925 

2 110671 10855< Ω <  184 

3 17105 7246< Ω <  140 

4 15356 5406< Ω <  49 

Table 28: Instability regions expressed on driver gear velocity Ω1. 

 

Table 28 shows that four instability regions occur at about 21500, 10700, 7100 and 5300 rpm. 

Such high values can be justified by the assumption of neglecting shafts and bearings effects 

on the meshing stiffness.  

 

3.5 Numerical solution 
 

A numerical solution of equations (3.3.3) and (3.3.7) can be obtained by the use of  different 

numerical integration techniques. Since both equations are differential equations of the second 

order, it is convenient to transform them into a system of two equations of the first order: 

 

1 2

2

v v

v x

=⎧⎪
⎨

=⎪⎩  

(3.5.1)

 with the following initial condition: 

1 1,0

2 2,0

(0)
(0)

v v
v v

=⎧⎪
⎨ =⎪⎩  

(3.5.2)

 

Once equations are in the form of equation (3.5.1), a direct numerical integration method (i.e. 

an adaptive step-size Runge-Kutta (Press, 1992)), is first considered for the piecewise linear 

system (equations (3.3.3)). In the case of smoothing approach (equations (3.3.7)), in addition 

to the Runge-Kutta method, an adaptive step-size Gear algorithms is used (IMSL®, 2003). In 

particular, the Gear approach is used because it is suitable for stiff problems (IMSL®, 2003). 

Since each numerical approach is able to solve equation (3.3.3) and (3.3.7) for a given value 

of the pinion speed, three important plots will be used in the following: 
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1. Time history and spectrum: shows the solution of the equation with respect to 

normalized time τ and allows to analyze the amount of relative vibration of the gears. 

An example of time history is reported in Figure 97. 

 

Figure 97: Example of time history. 

 

In this example the value of the non-dimensional amplitude oscillates between 1 and -

1 and clarify that double side contact is occurring.  

2. Bifurcation diagrams: shows dynamic scenario of different solutions with respect to 

pinion speed (the pinion speed is usually referred as ωm/ωn). In this case, a time 

history is calculated for each value of the pinion speed. Each time history is sampled 

with frequency equal to the relative mesh frequency ωm for an arbitrary number of 

mesh cycles. The amplitude of the samples is stored and plotted. Figure 98 shows an 

example of bifurcation diagram. For a given value of ωm/ωn two cases take place in 

this example: the solution has frequency equal to the mesh frequency ωm , the solution 

has frequency equal to one half of the mesh frequency. The bifurcation diagram 

presents one dot for a given value of ωm/ωn for the first case (underlined by blue line), 

two dots for a given value of ωm/ωn for the second case (underlined by red line). Point 

A represents the point at which the change between the two different behavior occurs. 

Such point is a period doubling (PD) bifurcation point.  
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Figure 98: Example of bifurcation diagram. 

 

Note that the points in the diagram does not represents maximum or minimum value of 

the relative time history.   

 

3. Semi-Amplitude/Frequency diagram: shows semi-amplitude of different solutions 

with respect to pinion speed (the pinion speed is usually referred as ωm/ωn). In this 

case, the semi-amplitude (maximum minus minimum divided by two) of the time 

history is calculated for each value of the pinion speed. This semi-amplitude is plotted 

with respect to pinion speed. Typical results of the semi-amplitude/frequency diagram 

(see Figure 99) are the dynamics behavior of the gears system at the resonant, 

parametric and super harmonic frequencies (Nayfeh, 1979).  

 
Figure 99: Example of semi-amplitude/frequency diagram. 
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It is important to clarify that all previous diagrams (bifurcation and semi-amplitude/frequency 

diagrams) are calculated considering the steady state solution. This means that each values is 

evaluated neglecting the transient of the dynamics responses.  

Since the integrated equations can take into account many non-linear phenomena, the steady 

state response depends on initial conditions (3.5.2). For this reason when the analysis is 

performed over a width range of the pinion speed, the following statements must be specified: 

1. The speed range of the analysis; 

2. The direction of the analysis: it is possible to perform a speed up (SUA) or speed 

down analysis (SDA); 

3. The initial condition for the first analyzed  speed. 

The bifurcation and semi-amplitude/frequency diagrams are carried out as follows: at the end 

of the analysis of the system response at a given regime (pinion speed) the final state is 

recorded; then the rotation speed is changed and a new simulation is carried out using as 

initial conditions the state of the previous computation. The purpose is to follow as well as 

possible a solution, in the case of coexisting orbits; if the change of speed is small one 

suppose that the new orbit is close to the orbit of the previous speed range; therefore, the 

system response is easily attracted from such orbit. 

The orbit is defined as the phase space representation of the solution of ODE system (ordinary 

differential equations system).  

 

In the following, the accuracy of the direct numerical integration of the non-smooth system is 

checked by means of comparisons with the existent literature. Subsequently the accuracy of 

smoothing technique is also proved by comparison with the previous, and the efficiency of the 

integration algorithms is evaluated. 
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3.5.1 Validation of Runge-Kutta approach 
 
Let us consider the trilinear system represented by the elastic stiffness presented in Figure 

100.  

 
Figure 100: Piecewise linear stiffness (Natsiavas, 1989). 

 

Such a system was deeply analyzed in (Natsiavas, 1989) by means of an analytical procedure. 

The equation of motion of such system are: 

( ) ( ) ( ) sin( )mx t cx t k x f tω+ + =
 

(3.5.3)

where: 

( )
( )

1

2 1 2( ) sgn ,
c

c c

k x x x
k x

k x k k x x x x

⎧ ≤⎪= ⎨
+ − >⎪⎩  

(3.5.4)

Note that in such system the boundary xc plays the role of clearance b present in equation 

(3.2.8).  

The equation (3.5.3) is now transformed in a nondimensional form ( ) ( ) / cy t x t x=  

2
1 1 1 1 0

2 2 2
2 2 2 2 0 2 1

2 sin( )

2 sin( )
c

c

y y y f t x x

y y y f t x x

ζω ω ω

ζω ω ω ω ω

+ + = ≤

+ + = + − >  
(3.5.5)

where  f0 = f / (mxc) and P = f /(mω2xc). 

Simulations are performed by linearyzing equation (3.5.3) or integrating it directly without 

smoothing functions (non-smooth approach). The following parameters are used in 

simulations: ζ = 0.05;  k2 = 4 k1; ( )1 2 / 2ω ω ω= + ;  P = 0.5. 

System (3.5.5) is analyzed with a direct integration code developed for solving systems 

(3.3.3) and (3.3.7). In Figure 8 results of the present model are compared with the Natsiavas’s 

solution (Natsiavas, 1989). In the figure both nonlinear and linarized models, integrated 

numerically, are presented. The linear model is accurate below y=1, i.e. below the boundary; 
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the solution is completely wrong. The direct numerical integration is very close to the solution 

obtained in (Natsiavas, 1989). 
 

 

Figure 101: Resonance of system (16): (--) linearized model; (─)(Natsiavas, 1989);  

(-* -) present model, direct integration. 

 
 

3.5.2 Validation of Runge-Kutta and Gear approaches for smoothing 
system 

 
Let us consider now equations (3.3.3) and (3.3.7): direct integration and smoothing technique 

are applied in order to check the accuracy of the latter one. Comparisons are carried out 

through bifurcation diagrams of the Poincaré maps (Nayfeh and Mook, 1979) (Jordan and 

Smith, 1999). The use of the bifurcation diagram is computationally heavy, but it allows a 

check of accuracy on a wide parameters range. 

The case study is the case study 1 described in Table 2. No profile errors are present, 

therefore, e(t)=0. 

Bifurcation diagrams are obtained by varying the excitation frequency (mesh frequency of the 

gear pair); two cases are considered: increasing frequency and decreasing frequency. 

Three approaches are used: direct integration of the non-smooth system; smoothed system 

integrated by an adaptive step-size Runge-Kutta algorithm; smoothed system integrated by an 

adaptive step-size Gear algorithm. All methods do not include the back-side effect.  Indeed, 
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even though system (3.3.3) is approximated by a smooth system based on a C∞ function given 

by equation (3.3.7), the new system can be extremely stiff, see e.g. Figure 79 b) and Figure 81 

b). The smoothed system is as stiff as the shape parameter α increases. 

Figure 102 shows the bifurcation diagram; all methods give almost the same results. Note that 

the Gear solution completely overlap the Runge-Kutta solution. 

 

 
Figure 102: Comparison of numerical integrator using bifurcation diagram: (blue) 

smoothing, Runge-Kutta integration algorithm; (red) smoothing, Gear integration algorithm; 

(black) non-smooth system, direct integration. 
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3.5.3 Validation with experiments 
 
In order to investigate the accuracy of the model with respect to a real system, a comparison 

with some experimental results is also performed. Kahraman (1997) presented a number of 

experiments on a physical system with clearance combining parametric and external forcing 

excitation (Kahraman and Blankenship, 1997). One of the tests concerned a spur gear set with 

the following geometrical and physical parameters: 

 
 Pinion Gear 
Teeth number 50 50 
Module [mm] 3 3 
Pressure angle [Deg] 20 20 
Base diameter [mm] 140.95 140.95 
Tooth thickness at pitch diameter [mm] 4.64 4.64 
Outer diameter [mm] 156 156 
Root diameter [mm] 140.68 140.68 
Face width [mm] 20 20 
Mass [kg] 2.5161 2.5161 
Inertia [kg m2] 0.0074 0.0074 
Young’s modulus [MPa] 206000 206000 
Poisson’s coefficient 0.3 0.3 
Center distance [mm] 150 
Backlash [mm] 0.1447 
Backlash (2b) on line of action [mm] 0.136 
Backside stiffness phase [rad] 1.594926 
Transmission ratio 1 
Contact ratio 1.75467 
Profile modifications None 

Table 29: Geometrical data of Kahraman’s spur gear set (courtesy of Prof. Kahraman). 

 
The simulation considers no manufacturing error e(t)=0 and an approximation for the stiffness 

function with 6 harmonics. The following values for the normalized stiffness function are 

obtained: 

 
Normalized stiffness 

 component Value  Phase Value [rad] 

,1dk  5.988751 10-2  
1ϕ  -3.135189 

,2dk  4.214662 10-2  
2ϕ  -3.124241 

,3dk  3.320816 10-2  
3ϕ  -3.111668 

,4dk  2.384664 10-2  
4ϕ  -3.095101 

,5dk  1.76215 10-2  
5ϕ  -3.083519 

,6dk  1.219961 10-2  
6ϕ  -3.082149 

Table 30: Stiffness component for the Kahraman case study. 
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A damping value of ζ = 0.01 and an external torque Tg1 of 340 Nm is used.  

According to finite element results, the natural frequency of the system ωn results to be equal 

to 1.983463 104 rad/s. Using 15 positions in a mesh cycle the peak to peak value of the mesh 

stiffness is 6.24172 107 N/m and the peak to peak of the static transmission error is 5.34868 

μm. The dynamic simulation considers the adaptive step-size Gear algorithm and the 

hyperbolic tangent smoothing backlash function with an initial position equal to (0) 1.0001v =  

and an initial speed of (0) 0.00001v =
 
. The integration tolerance is 10-8.  

A semi-amplitude/frequency plot is used to compare the experimental data and the results 

from the numerical simulation. Figure 103 shows a good agreement between the numerical 

results and the experimental data. 

 
Figure 103: Comparison between numerical simulation and experimental data: (○)Numerical 

simulation; (*) Kahraman’s  experimental data (Kahraman and Blankenship, 1997). 
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3.5.4 Choice of the numerical integrator 
 

Since the previous sections show good behaviors of all numerical techniques, the adopted 

method has been chosen by the following consideration: 

1. The Gear algorithm is preferable because it is suitable for stiff problems (IMSL®, 

2003) and results are more reliable; 

2. Non-smoothing methods are time consuming with respect to smoothing techniques; 

3. Hyperbolic tangent function is time saving with respect to arc-tangent approach; 

For these reason the Gear algorithm with the hyperbolic tangent smoothing function will be 

used in the following. The shape parameter is always set to 108. 

 

3.6 Case studies 
In this section some case studies are analyzed in order to understand the effect of some 

parameters on the dynamic behavior of a spur gear pairs. 

3.6.1 Case study 1: Spur gear pair without profile modification 
 
The first analysis is performed on the case study 1 (see previous sections). Table 31 shows the 

geometrical and physical parameters: 
Data Pinion Gear 
Number of teeth 28 43 
Module [mm] 3 3 
Pressure angle [Deg] 20 20 
Base radius [mm] 39.467 60.610 
Theoretical pitch radius [mm] 42 64.5 
Thickness on theoretical pitch circle [mm] 6.1151 6.7128 
Addendum modification [mm] 1.927 2.748 
Face width [mm] 27 22.5 
Hob tip radius [mm] 0.9 0.9 
Outer diameter [mm] 93.1 139.7 
Root diameter [mm] 79.1 126.2 
Inner diameter [mm] 40 40 
Mass [kg] 0.71681 1.9823 
Inertia [kg m2] 0.0008076 0.0047762 
Young’s modulus [MPa] 206000 206000 
Poisson’s coefficient 0.3 0.3 
Center distance [mm] 111 
Backlash [mm] 0.3461 
Backlash (2b) on line of action [mm] 0.312 
Backside stiffness phase [rad] 1.594232 
Transmission ratio 0.6511 
Contact ratio 1.28565 
Profile modification None 

Table 31: Complete geometrical data of case study 1 (courtesy of CNH Case New Holland). 
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The simulation consider a damping value of ζ = 0.01, an external torque Tg1 of 470 Nm and no 

manufacturing error e(t)=0. The static transmission error is calculated for 15 positions within 

a mesh cycle, and the approximation for the stiffness function used 7 harmonics.  

The evaluated peak to peak value of the mesh stiffness is 1.03906 108 N/m, while the peak to 

peak value of the static transmission error is 11.6457 μm. 

The following components for the normalized stiffness function are obtained: 
Normalized stiffness 

 component Value  Phase Value [rad] 

,1dk  1.789019 10-1  
1ϕ  -3.074412 

,2dk  3.435601 10-2  
2ϕ  0.09870295 

,3dk  3.928705 10-2  
3ϕ  0.1843604 

,4dk  1.848706 10-2  
4ϕ  -2.739105 

,5dk  1.590455 10-2  
5ϕ  -2.859687 

,6dk  5.281117 10-3  
6ϕ  1.135353 

,7dk  5.28716 10-3  
7ϕ  0.4246241 

Table 32: Stiffness components for the case study 1. 
 

According to finite element analysis, the natural frequency of the system ωn results to be 

equal to 3.156025 104 rad/s.  

The dynamic simulation considers the adaptive step-size Gear algorithm and the hyperbolic 

tangent smoothing backlash function with an initial position equal to 1(0) 1.0001v =  and an 

initial speed of 2 (0) 0.00001v =  for the first speed analyzed. The integration tolerance is 10-8. 

Figure 104 shows the semi-amplitude/frequency behavior of the spur gear pair for a speed up  

analysis (SUA) (Figure 104 a)) and a speed down analysis (SDA) (Figure 104 b)).  

 
Figure 104: Semi-amplitude/frequency diagram for case study 1:  a) SUA analysis (black);  

b) SDA analysis (blue). 
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In Figure 105 the previous semi-amplitude/frequency diagrams are overlapped in one 

complete diagram.  

 

 
Figure 105: Semi-amplitude/frequency diagram for case study 1:  SUA analysis (black);  

SDA analysis (blue). 

 
The following phenomena are observed: 

1. Different dynamic behavior between the SUA and SDA, typical of nonlinear systems; 

2. A principal resonance at ωm/ωn = 1; 

3. A parametric resonance at ωm/ωn = 2 due to the time variable stiffness; 

4. Super harmonics resonances at some frequencies in the range ωm/ωn = 0 - 0.5, due to 

higher harmonics of the mesh stiffness Fourier expansion and to the nonlinearity; 

5. Jumping phenomena at particular resonance frequencies: ωm/ωn = 1 and ωm/ωn = 2 for 

SUA and ωm/ωn = 0.5, ωm/ωn = 1 and ωm/ωn = 2 for SDA. This typical nonlinear 

effect results in a sudden change (up or down) of the vibration amplitude while 

speeding up or speeding down; 

6. Softening behavior due to loss of contact at ωm/ωn = 0.5, ωm/ωn = 1 and ωm/ωn = 2. 

This typical nonlinear effect results in sudden change from the linear behavior with a 

bending of the semi-amplitude/frequency diagram. Figure 106 clarifies the difference 

between softening and hardening behavior. 
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Figure 106: Deviation from linear behavior: softening (left), hardening (right). 

 
Figure 107 shows bifurcation diagrams for SUA and SDA. 
 

 
Figure 107: Bifurcation diagram for case study 1:  a) SUA analysis (black);  

b) SDA analysis (blue). 

 
The two diagrams of Figure 107 are overlapped in Figure 108. 

 
Figure 108: Bifurcation  diagram for case study 1:  SUA analysis (black); SDA analysis 

(blue). 
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Figure 107 and Figure 108 show the presence of a period doubling bifurcation nearby ωm/ωn = 

2,  which corresponds to the parametric resonance on the semi-amplitude/frequency diagrams. 

In order to check the period doubling behavior a time history is plotted for ωm/ωn = 2.00072 

with 1(0) 1.15369v =  and 1(0) 0.268193v = −  as initial conditions for the first speed analyzed. 

 
Figure 109: Time history and relative spectrum at ωm/ωn = 2.00072 . 

 

The spectrum reflects that in the period doubling frequency range, the steady state response of 

the system has frequency equal to one half the mesh frequency ωm. 

It is well known that parametrically excited systems undergo to parametric instability and the 

principal instability region gives rise to 2T response. Here the nonsmootheness of the system 

influences the bifurcation path, which is generally parabolic for smooth systems. Converselly 

here a strong jump appears and the bifurcation takes place suddenly. 
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3.6.2 Case study 2: Spur gear pair with profile modification 
 
The second test is carried out to analyze the effect of profile modifications on the gears 

dynamics. A new set of gears is considered: case study 2 is equivalent to case study 1 except 

for the profile modifications described in Table 33: 

  Pinion Gear 
 Tip relief    
 Type of modification Linear Linear 
 Roll angle at start of relief [Deg] 30.1569 29.2127
 Magnitude of relief [mm] 0.016 0.018 
    
 Root relief    
 Type of modification Linear Linear 
 Roll angle at start of relief [Deg] 23.4706 25.2079
 Roll angle at end of relief [Deg] 14.4334 20.5764
 Magnitude of relief [mm] 0.016 0.018 
    
 Crowning    
  Magnitude [mm] None None 

Table 33: Profile modifications adopted for case study 2 (courtesy of CNH Case New 

Holland). 

Note that all parameters in Table 33 are calculated according to CNH standard and are 

designed to improve the static behavior of the gear pair.  

The simulation considers a damping value of ζ = 0.01, an external torque Tg1 of 470 Nm and 

no manufacturing error e(t)=0.  The static transmission error is calculated for 15 positions 

within a mesh cycle, and the approximation for the stiffness function used 7 harmonics. The 

peak to peak of the mesh stiffness is 3.12098 107 N/m while the peak to peak of the static 

transmission error is 5.10005 μm. 

The following components for the normalized stiffness function are obtained (see equation 

(3.3.6)): 
Normalized stiffness 

component Value  Phase Value [rad] 

,1dk  6.039868 10-2  1ϕ  -0.02302711 

,2dk  2.549201 10-3  2ϕ  -0.9228034 

,3dk  1.017452 10-2  3ϕ  3.070796 

,4dk  7.716745 10-3  4ϕ  -2.999429 

,5dk  3.415436 10-3  5ϕ  -0.8892686 

,6dk  2.19705 10-3  6ϕ  0.3613773 

,7dk  2.686733 10-3  7ϕ  2.395425 

Table 34: Stiffness components for the case study 2. 
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According to finite element results, the natural frequency of the system ωn results to be equal 

to 2.870711 104 rad/s. The dynamic simulation considers the adaptive step-size Gear 

algorithm and the hyperbolic tangent smoothing backlash function with an initial position 

equal to 1(0) 1.0001v =  and an initial speed of 2 (0) 0.00001v =  for the first speed analyzed. 

The integration tolerance is 10-8. 

 
Figure 110: Semi-Amplitude/frequency diagram for case study 2:  SUA analysis (black);  

SDA analysis (blue). 

 

 
Figure 111: Bifurcation  diagram for case study 2:  SUA analysis (black);  

SDA analysis (blue). 

 

The semi-amplitude/frequency and the bifurcation diagrams (Figure 110 and Figure 111) 

show similar results to case study 1. 
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Figure 112: Comparison of semi-amplitude/frequency diagrams: no profile modifications 

(black); gears  with profile modifications (blue). 

 

A direct comparison of the analysis performed on the same gear pair with and without profile 

modifications, the following considerations can be formulated: 

1. The effect of profile modifications decreases the peak to peak of both mesh stiffness 

and static transmission error of about 56%. 

2. The natural frequency of the system changes from 3.156025 104 rad/s to 2.870711 104 

rad/s (decreasing of 9%). 

3. The effect of profile modification does not change the main dynamics behavior except 

for a general decrease of the vibration amplitude as shown trough direct comparison of  

semi-amplitude in Figure 112. 

 

In conclusion, the profile modifications of Table 33 have a good benefit on the static behavior 

of the gears pair but lightly improve its dynamics. 

 

3.6.3 Effect of torque on case study 2 
 
The third analysis considers the effect of the torque on the vibrations of the case study 2 gears 

pair. The following torque values are applied: 

 
 100% 75% 50% 25% 

Torque [Nm] 470 352.5 235 117.5 
Table 35: Torque value for the case study 2. 
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The simulation considers a damping ratio of ζ = 0.01 and no manufacturing error e(t)=0.  The 

static transmission error is calculated for 15 positions within a mesh cycle, and the 

approximation for the stiffness function used 7 harmonics. The following values for the 

normalized stiffness function are obtained: 

 

 
Normalized stiffness 

component Value 

 100% 75% 50% 25% 

,1dk  6.039868 10-2 1.199132 10-1 2.053372 10-1 3.620781 10-1 

,2dk  2.549201 10-3 1.371908 10-2 4.702296 10-2 9.641139 10-2 

,3dk  1.017452 10-2 2.144102 10-2 2.244324 10-2 2.869272 10-2 

,4dk  7.716745 10-3 3.404132 10-3 1.107648 10-2 7.154377 10-3 

,5dk  3.415436 10-3 3.491344 10-3 4.474452 10-3 6.23467 10-3 

,6dk  2.19705 10-3 5.574036 10-3 1.333034 10-3 3.280057 10-3 

,7dk  2.686733 10-3 2.560862 10-3 2.078061 10-3 7.23238 10-3 

Table 36: Effect of torque on stiffness components for case study 2. 
 

 

Phase Value [rad] 
 100% 75% 50% 25% 

1ϕ  -0.02302711 -0.0127078 -0.01526997 -0.009202071 

2ϕ  -0.9228034 -3.023366 3.124581 3.088847 

3ϕ  3.070796 3.114823 -3.125123 -2.894979 

4ϕ  -2.999429 -0.4571869 -0.3720098 -0.1799676 

5ϕ  -0.8892686 -0.6513739 2.947773 0.3490536 

6ϕ  0.3613773 3.015291 0.5171421 -0.752786 

7ϕ  2.395425 0.4621283 -2.4227 2.814945 

Table 37: Effect of torque on the phases of the stiffness components for case study 2. 
 

The results of  Table 38 can be illustrated by a simple histogram: 
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Figure 113: Effect of torque on stiffness components for the case study 2: 100% of nominal 

(black); 75% of nominal (blue); 50% of nominal (red); 25% of nominal (green). 

 

 

According to finite element results, the natural frequencies ωn, the peak to peak value of the 

mesh stiffness and the peak to peak value of the static transmission error of each cases are: 

 

 ωn [rad/s] Peak to peak 
mesh stiffness [N/m] 

Peak to peak 
STE [μm] 

100% 2.870711 104 3.12098 107 5.10005 
75% 2.803574 104 5.70753 107 7.93799 
50% 2.710842 104 9.07081 107 10.3456 
25% 2.55632 104 1.46854 108 13.0259 

Table 38: Effect of torque on natural frequency ωn , mesh stiffness and transmission error for 

case study 2.  

 

The dynamic simulation considers the adaptive step-size Gear algorithm and the hyperbolic 

tangent smoothing backlash function with an initial position equal to 1(0) 1.0001v =  and an 

initial speed of 2 (0) 0.00001v =  for the first speed analyzed. The integration tolerance is 10-8. 
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Figure 114: Comparison of semi-amplitude/frequency diagrams for case study 2: 100% of 

nominal (black); 75% of nominal (blue); 50% of nominal (red); 25% of nominal (green). 

 

 
Figure 115: Comparison of bifurcation diagrams (SUA and SDA) for case study 2: 100% of 

nominal (black); 75% of nominal (blue); 50% of nominal (red); 25% of nominal (green). 
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The results of analysis can be summarized in five considerations: 

1. Decreasing the torque results in a worst value of the peak to peak for both mesh 

stiffness and STE. 

2. The natural frequency of the system decreases with the increase of the torque. 

3. Decreasing the torque results in a decreasing of the amplitude of vibration at the high 

frequencies (principal and parametric resonances) and in a increase at low frequencies 

(super harmonics resonances). Despite the behavior of amplitudes, the decrease of the 

torque increases the frequency range at which nonlinear phenomena take place. For 

example, a more detailed SDA analysis shows that parametric period doubling 

response occur for a wider range at 25% of the torque with respect to 100%. 

4. A time history carried out at ωm/ωn = 1.8863, with initial conditions equal to 

1(0) 1.20756v =  and 1(0) 0.0483475v =  (see Figure 116), shows amplitude 

modulation, which justify the multiple bifurcations between ωm/ωn = 1.8 and ωm/ωn = 

1.9 in the bifurcation diagram of Figure 115. 

 

 
Figure 116: Time history and relative spectrum at ωm/ωn = 1.8863. 
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3.6.4 Effect of damping on case study 2 
In order to examine the dynamic effect of the damping ratio ζ, case study 2 is simulated with ζ 

= 0.005 and compared with previous analysis with ζ = 0.01. 

 

 
a) 

 
b) 

 

Figure 117: Comparison of semi-amplitude/frequency diagrams for ζ = 0.01 (black), ζ = 

0.005 (blue): a) SUA analysis; b) SDA analysis. 

 

 

Figure 118: Comparison of bifurcation diagrams (SUA and SDA) for case study 2: ζ = 0.01 

(black); ζ = 0.005 (blue). 

 
Figure 117 and Figure 118 show comparison of the semi-amplitude/frequency and bifurcation 

diagrams. Note that the bifurcation diagram include both SUA and SDA analyses. The 

simulation shows that a reduction from ζ = 0.01 to ζ = 0.005 of the damping coefficient has a 

very light effect of on gears dynamics behavior. 
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3.6.5 Effect of manufacturing errors on case study 2 
 
In this section the effect of manufacturing errors on gears dynamics are investigated. 

The approach described in previous sections is applied to case study 2. In effect case study 3 

is equivalent to case study 2 except for the introduced profile tolerances described in Table 

39.  

  Pinion Gear 
 Involute    
  Tolerance [mm] 0.008 0.008 
    
 Tip relief    
 Type of modification Linear Linear 
 Roll angle at start of relief [Deg] 30.1569 29.2127
 Magnitude of relief [mm] 0.016 0.018 
 Tolerance [mm] 0.02 0.02 
    
 Root relief    
 Type of modification Linear Linear 
 Roll angle at start of relief [Deg] 23.4706 25.2079
 Roll angle at end of relief [Deg] 14.4334 20.5764
 Magnitude of relief [mm] 0.016 0.018 
 Tolerance [mm] 0.02 0.02 
    
 Crowning    
  Magnitude [mm] None None 

Table 39: “K” chart tolerances for case study 3. 
 

15 points on both pinion and gear, simulate a single-flank machine measurement. These 

points are used for the analytical reconstruction of the deviation from involute profile along 

the each teeth. In order to simulate the meshing of the two wheel, 10 point are considered and 

the combined profile manufacturing error is evaluated according to equation (3.2.28).  

 

Figure 119: “K” chart for the pinion and the gear of case study 2. 
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Figure 119 shows the generated deviation from the theoretical involute profile for the first 

tooth of the pinion and of the gear. 

In this example, the FFT of the combined profile error is composed by four harmonics at 

multiple frequency of the mesh frequency (see Figure 120). The values of amplitudes and 

phases of each harmonic component is listed in Table 40 according to equation (3.3.2).  

 

 

Figure 120: FFT spectrum of the combined profile error. 

 

ωm/ωn  

Normalized 
manufacturing 

error 
components 

Value  Phase Value [rad] 

1  1E  6.87993 10-2  1γ  9.349212 10-1 

2  2E  1.86928710-2  2γ  1.987622 

3  3E  1.753613 10-2  3γ  2.518925 

4  4E  1.602615 10-2  4γ  2.882258 

Table 40: Components of manufacturing profile errors applied to the case study 2. 

 
 
Figure 121 and Figure 122 show that the general dynamics behavior does not change 

significantly except for a considerably increase of vibration amplitude at all frequency. This 

tendency is more evident especially at low speeds where contact loss can also occur. 
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Figure 121: Comparison of semi-amplitude/frequency diagrams for case study 2: no 

manufacturing errors (black); with manufacturing errors (blue). 

 

 

Figure 122: Comparison of bifurcation diagrams for case study 2: no manufacturing errors 

(black); with manufacturing errors (blue). 
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3.6.6 Example of chaotic behavior 
According to literature the inclusion of manufacturing errors can cause chaotic behavior 

especially when torque is decreased (Kahraman and Blankenship, 1997).  

In order to check if such phenomena can be detected with the present model, a simulation of 

case study 2 is performed at a very low torque. Two analyses are carried out: the first does not 

include manufacturing profile errors, the second one include manufacturing errors according 

to Figure 123 and Table 41. 

 
Figure 123: FFT spectrum of the combined profile error. 

 

ωm/ωn  

Normalized 
manufacturing 

error 
components 

Value  Phase Value [rad] 

1  1E  6.733351 10-2  1γ  9.602194 10-1 

2  2E  1.680263 10-2  2γ  2.010088 

3  3E  1.680263 10-2  3γ  2.010088 

4  4E  1.379845 10-2  4γ  2.967895 

Table 41: Components of manufacturing profile errors applied to the case study 2. 
 
Using a torque value of 100 Nm, the natural frequency of the system ωn results to be equal to 

2.52129 104 rad/s. Using 15 positions in a mesh cycle the peak to peak of the mesh stiffness is 

1.59036 108 N/m and the peak to peak of the static transmission error is 13.5439 μm.  

 

The normalized stiffness components are listed below: 
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Normalized stiffness 

 component Value  Phase Value [rad] 

,1dk  4.028604 10-1  
1ϕ  -0.005822678 

,2dk  1.049323 10-1  
2ϕ  3.093856 

,3dk  3.362532 10-2  
3ϕ  -2.911356 

,4dk  6.101244 10-3  
4ϕ  -0.1923082 

,5dk  1.077443 10-2  
5ϕ  0.2153367 

,6dk  3.035402 10-3  
6ϕ  -0.8139278 

,7dk  8.575266 10-3  
7ϕ  2.87615 

Table 42: Stiffness component for the case study. 

 
The dynamic simulation considers an initial position equal to 1(0) 1.0001v =  and an initial 

speed of 2 (0) 0.00001v =  for the first speed analyzed. The integration tolerance is 10-8. 

 
a) 

 
b) 

Figure 124: Comparison of bifurcation diagrams (SUA): a) no manufacturing errors; b) with 

manufacturing errors. 

 
a) 

 
b) 

Figure 125: Comparison of bifurcation diagrams (SDA): a) no manufacturing errors; b) with 

manufacturing errors. 
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Figure 124 and Figure 125 show that the analysis predict chaotic vibration only when 

manufacturing errors are included into the model. This in agreement to the mentioned 

Kahraman and Blankenship (1997)experiments. 

In addition to the previous analysis a deeper simulation is performed for a time history at 

ωm/ωn = 1.7021. The initial condition are set to 1(0) 0.192391v = −  and 2 (0) 0.258668v = − . 

The steady state response, its spectrum (Figure 126) and the phase plane plot confirm the 

chaotic behavior of the system.  

 

 

Figure 126: Time history and relative spectrum at ωm/ωn = 1.7021. 

 

 

Figure 127: Phase plane plot. 
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Chapter 4  
 

In this chapter procedures for the optimization of profile modifications are developed to  

reduce the rotational vibrations of a spur gears pair. Two main approaches are presented. 

The first heuristic methodology  calculates the peak to peak of the STE for a large range of 

cases using different values of the profile modification parameters. Maps of the STE are 

provided with respect to different couple of variables in order to choose the set of them which 

yield to the minimum peak to peak of the STE and understand manufacturing reliability 

(robustness). By means of sequential process also the effect of all parameters in the 

optimization procedure can be monitored. Since the effect of only two parameters at time can 

be checked, the results of this heuristic method do not yield to a minimum of the objective 

function but only to an optimum. The second approach is based on genetic algorithms; the 

basic idea is that the genetic pool of a given population, potentially contains the solution, or a 

better solution, to the given adaptive problem.  The genetic algorithm then creates a 

population of solutions and applies genetic operators such as “mutation” and “crossover” to 

evolve the solutions in order to find the best one. Again the final set of profile modifications 

cannot be considered a minimum but an optimum. The advantages and disadvantages of such 

method with respect to the heuristic one can be summarized as follows: 

Advantages: 

1. Small number of iterations to reach the optimum; 

2. Control of the procedure performance during calculation.  

3. Allows to define a more complex objective function considering the effect of higher 

harmonics of the STE analytical reconstruction. 

Disadvantages: 

1. It is not clear the effect of each single parameters along the optimization process; 

2. Do not provide robustness information. 

Since both methodologies consider objective functions based on the peak to peak of STE and 

its higher order harmonics, the optimization processes do not automatically improve the 

dynamic behavior of the gears system. For this reason dynamic simulations are performed to 

check the effect of the optimum set of profile modification parameters on the gears. 

Example of the previous methodology are given on actual gears. 
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4.1 General approach to optimization 
 

In this work the relationship between gears radiated noise and the transmission error has been 

clarified and described. For this reason, the literature focuses any attempt to create silent 

gears, results in controlling and reducing the sources of excitation such as STE, 

manufacturing errors.  

Since it is very difficult to design gears by directly considering the dynamic behavior, most of 

the common approaches are based on static calculations. The main concepts regards three 

macro-areas: 

1. Macrogeometry: In this case the design process investigates the effect on radiated 

noise of macro geometrical parameters such as number of teeth, diameters, pressure 

angle, backlash, and clearance. For example, many authors analyze the effects of 

involute contact ratio εα on both spur and helical gears vibrations ((Sato et al., 1983) 

(Umezawa, 1985-b)), suggesting values higher then two (HCR high contact ratio 

gears). In a more detailed work, Kahraman ((Kaharaman and Blankenship, 1996-b), 

(Kahraman and Blankenship, 1999)) quantified the influence of involute contact ratio 

εα on dynamic transmission error and experimentally validate design guidelines to 

achieve quite gears. Other related studies ((Arikan, 1996), (Pedrero and Artes, 1996-

a), (Pedrero and Artes,1996-b)) gives approximate equations for the relationship 

between pinion and gear addendum modification factors to have a pre-established 

contact ratio considering also specific sliding.  

2. Surface refinement: Since manufacturing profile errors are a possible source of 

dynamics excitation, the quality of the teeth can affect gears vibrations. Important 

aspects such as surface roughness, surfaces refinement and tolerance can play a 

significant role in reducing radiated noise. The main problem related to increase the 

surface quality is due to higher manufacturing cost. 

3. Microgeometry: In this case the main idea is to intentionally remove material from the 

gear tooth flanks so that the resulting form is no longer a perfect involute. These 

modifications (tip and root relief) compensate tooth deflections under load so that the 

resulting transmission error is minimized for a particular range of operating 

conditions. 

 

Since macrogeometry modifications can involve a drastical change of the gear pair, and it is 

practicable only at the first steps of the design process, and surface refinements can involve 
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higher cost from a manufacturing point of view, the present work will focus its attention only 

on micro geometrical optimization. 

 

4.1.1 Harris maps 
 

The key point in design the correct profile modifications to reduce gears vibrations, is the 

calculations of 14 parameters that controls their definitions. In the previous chapter roll 

angles, magnitudes and type of modification (linear or parabolic) has been defined as the 

profile modifications parameters. 

The literature offers many examples of guidelines to solve this problem but none of them 

seems to be valid for all applications and load conditions. 

In 1940 Walker was the first that consider the tooth deflection in calculation of tooth load. He 

proposed a trapezoidal tooth cycle from which it was possible to calculate the amount of tip 

relief and its extension along the tooth profile (Walker, 1940). 

The major contribute in this field was given by the Harris in 1958 (Harris, 1958) (Smith, 

1999). He introduced the concept of static transmission error applied to profile modifications 

by developing a particular diagrams called “Harris map”.  

Since a general profile modification can be represented as deviation from the theoretical 

involute profile (see the example of  Figure 11), the combined effect of one pair of teeth 

meshing under no load would be to give a STE of the shape of Figure 128, with about a third 

of total span following the involute for both profile and generating no error (in Figure 128 the 

teeth has only tip relief). 

 
Figure 128: Representation of STE for mating profiles with tip relief in case of no load. 
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If several pairs of teeth in mesh are putting in succession the obtained effect is the one of 

Figure 129. 

 
Figure 129: Effect of mating teeth pairs on STE in case tip relief and no-load. 

 

The solid line of Figure 129 represents the STE under no-load conditions during gears 

rotation. When load is applied there are two regimes (see Figure 130): one around the pitch 

point where only one pair of teeth are in contact, one near the changeover points where there 

are two pairs in contact. Since point S corresponds to the HPSTC, the load is shared 

alternatively between one teeth pair in the involute zone and two teeth pairs in the relief zone 

between to subsequently points S.  

 
Figure 130: Example of Harris map. 

 
Assuming a constant mesh stiffness, if the combined deflection of the two pairs in contact is 

equal to the deflection when just one pair is in contact, the STE will have a constant value and 

no oscillation. Figure 130 shows that at a particular design load (d) the effects of tip relief are 

exactly cancelled by the elastic deflections. There is a downward deflection away from rigid 

pure involute position but as the sum of tip relief and deflection is constant, it does not cause 

vibration. This approach allows to calculate the position of point C and therefore the 

magnitude of the tip relief once the deflection at the design load is known. 

A similar method can be described in case of root relief. 
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In 1970 Niemann introduced a similar methodology for low load conditions and referred it as 

“short” relief  with respect to Harris “long” relief (Niemann and Baethge, 1970). Note that 

neither “short” nor “long” relief can give low STE at both high and low load.  

Despite the previous techniques, the literature offers other design guidelines for the profile 

modifications. For example Tavakoli developed a suitable optimization algorithm to minimize 

any combination of the harmonics of gear mesh frequency components of the static 

transmission error with different combinations of tip and root relief (Tavakoli and Houser, 

1986). Munro et al. (1990) set a theoretical methodology for determining the amount and 

extent of profile modifications to provide a smooth transmission error curve when the module 

of the gear is higher than 5 mm. Cai and Hayashi (1992) developed an optimization technique 

by means of minimization of the equivalent exciting force. Matsumura et al. (1996) and 

Rouverol (1996) defined new methodologies to eradicate gears noise through profile 

deviations, respectively for light and high load conditions. Experimental works were made by 

Kahraman and Blankenship (1999-b) who analyzed the influence of gears linear flank 

modifications on the torsional vibrations of a spur gears system by means of measured DTE. 

 

4.2 Heuristic method 
 
In the previous sections the influence of profile modifications has been shown with respect to 

the STE. For this reason the implemented Heuristic method will have the value of peak to 

peak of the STE as objective function. In simple terms the optimization problem can be 

summarized as the calculation of a set of tip and root relief for both pinion and gear to achieve 

the smaller peak to peak value of the STE. The calculation of the peak to peak passes trough 

the FE methodologies explained in chapters 2 and 3 neglecting manufacturing errors. It is 

important to remember that the value of the peak to peak is calculated by means of the 

analytical reconstruction of the STE through the DFT algorithm. 

The main problem of such optimization method is that the used of FE yields to an objective 

function which is not analytically defined. No close form solution can be calculated and no 

analytical approach such as Hessian matrix, can be applied successfully. In effect the STE 

depends on the meshing stiffness which is related to the geometry and the elasticity of the 

gears. Therefore only numerical techniques can guarantee a sufficient accuracy. On the other 

hand, even the most sophisticated FE codes, such as MSC Marc® or Calyx®, require a big 

computational effort for a simple STE calculation over a mesh cycle.  This forbids the 
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possibilities of performing a “many cases” analysis in which all combination of the 

parameters are considered. 

In order to reduce the complexity of the problem some assumptions has been supposed, and a 

sequential iteration method has been developed considering multiple analysis where only two 

parameters at time are examined (Beghini et al., 2004). 

 
Figure 131: Nomenclature for the profile modification parameters.  

 

According to Figure 131, a set of 7 parameters characterizes the profile modifications on each 

gear. The type of modification will not be considered as a variable parameter. In effect it 

depends on the available manufacturing process and it is defined at the beginning of the 

analysis. Also the end roll angle at root is not variable since it is equal to the start active 

profile point (SAP). The remaining 4 variable parameters can assume any value inside the 

following range: 
Parameter From To 

ϕt,s Pitch point Tip circle 

magt 0 50 μm 

ϕr,s Pitch point SAP 

magr 0 50 μm 

Table 43: Dominium of variable parameters for the heuristic optimization. 

 

For example the start roll angle at tip is defined from the roll angle value at pitch point and the 

roll angle value at the tip circle. The magnitude can assume a minimum value of 0, which 

correspond to no relief, and a maximum value of 50 μm, which is in agreement with 

technological limits. 

The sequential iterative approach consists in a set of four different analysis (STEP) where the 

following couple of variable are changed simultaneously. 
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 STEP 1 STEP 2 STEP 3 STEP 4 

Variable parameter on pinion ϕt,s magt ϕr,s magr 

Variable parameter on gear ϕt,s magt ϕr,s magr 

Table 44: Variable parameters for each step. 

At each step the range of the relative variable parameters is divided into an arbitrary number 

of intervals. The peak to peak of the STE is calculated for each different combination of 

assumed values. In this way a tridimensional surface allows to understand the behavior of the 

object function with respect to the used variable parameters. Note that the minimum value of 

such curve, it is not an absolute minimum since each step does not considers the variation of 

all parameters simultaneously. For this reason, the minimum will be simply referred as an 

optimum point. A complete optimization analysis allows to obtain a new set of profile 

modifications from an initial set through calculation of the optimum at each step of analysis 

(see Figure 132). 

 
Figure 132: Sequence of the iteration step for the heuristic method. 
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The  optimum of each step will provide the new set of profile modification parameters for the 

next step. The optimum of the fourth step defines the new set of profile modifications. 

 

As final considerations, the following disadvantages of the heuristic method must be 

underlined: 

1. The final optimum depends from the initial set of profile modifications: this means 

that different initial conditions can yield to very different results; 

2. The final optimum depends on steps order and variables pairs ; Table 44 defines the 

order of the pairs of variable parameters. A different order of step and variable can 

yield to very different results; 

 

4.2.1 Manufacturing robustness 
 
One of the main advantages of the heuristic approach is the possibility of control the effect of 

one parameters on the peak to peak of the STE. For this reason it is possible to assure 

manufacturing reliability to the optimum set of profile modifications.  

Let us considers Figure 133; in this case an example of peak to peak STE surface is given 

with respect to the variation of the roll start angles at tip. The optimum stands on a flat region 

which assures manufacturing reliability. A small perturbation of the roll angles in the 

neighborhood of the optimum, does not affect the value of the STE. This means that the 

manufacturing process can have larger tolerance on the variable parameters.  

The “false optimum” is discarded for the opposite reason. Even if the STE value is small, the 

sharp variation of the surface can involve high accuracy in the manufacturing process. 

 
Figure 133: Example of false optimum. 
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4.2.2 Application of the heuristic method 
 
An application of the developed heuristic method is proposed for case study 2. Therefore the 

profile modifications shown in Table 33 are used as initial profile modifications for the 

iteration process. The sequence of the iteration process follows the scheme of Figure 132. For 

each step the peak to peak value of the STE is calculated for a grid of 1681 possible 

combination whitin the two relative variable parameters. At each iteration 15 position within a 

mesh cycle are used to calculate the STE with FE analysis. The peak to peak value of STE, is 

calculated based on the DFT analytical reconstruction with 7 harmonics. 

The following figures show the three-dimensional surface obtained for each step. The chosen 

optimum is also indicated. 

 
Figure 134: Peak to peak of STE surface for step 1. 

 
Figure 135: Peak to peak of STE surface for step 2. 
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Figure 136: Peak to peak of STE surface for step 3. 

 

 
  Figure 137: Peak to peak of STE surface for step 4. 

The following table summarizes the profile modifications of the chosen optimum at each 

steps. 

 
 Initial case 

 (case study 2) 
Optimum of STEP 1 Optimum of STEP 2 Optimum of STEP 3 Optimum of STEP 4

 Pinion Gear Pinion Gear Pinion Gear Pinion Gear Pinion Gear 
Tip relief    
typet Linear Linear Linear Linear Linear Linear Linear Linear Linear Linear
ϕt,s [Deg] 30.1569 29.2127 32.2873 30.4219 32.2873 30.4219 32.2873 30.4219 32.2873 30.4219
magt [mm] 0.016 0.018 0.016 0.018 0.015 0.017 0.015 0.017 0.015 0.017
    
Root relief    
typer Linear Linear Linear Linear Linear Linear Linear Linear Linear Linear
ϕr,s [Deg] 23.4706 25.2079 23.4706 25.2079 23.4706 25.2079 23.8994 24.7245 23.8994 24.7245
ϕt,e [Deg] 14.4334 20.5764 14.4334 20.5764 14.4334 20.5764 14.4334 20.5764 14.4334 20.5764
magr  [mm] 0.016 0.018 0.016 0.018 0.016 0.018 0.016 0.018 0.017 0.018

Table 45: Profile modifications parameters for the optimum at each step. 
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Values of the peak to peak of the STE and mesh stiffness for each optimum is provided in 

Table 46. 

 

 
Initial case 

(case study 2)

Optimum of 

STEP 1 

Optimum of 

STEP 2 

Optimum of 

STEP 3 

Optimum of 

STEP 4 

 Stiffness pk to pk [N/m] 3.1210 107 1.4981 107 1.4782 107 1.1333 107 1.1206 107 
 STE pk to pk [μm] 5.10005 2.29845 2.26704 1.7204 1.70299 

Table 46: Values of peak to peak for mesh stiffness and STE. 

 

The optimum of step 4 is the final heuristic optimum, and yields a decrease of the peak to 

peak value of STE of around 64%.  

 

 

Since the heuristic approach is based on static assumption, the effect of the new profile 

modification on the dynamics is simulated using the developed vibration model. The 

simulation considers a torque value of 470 Nm, a damping value of ζ = 0.01 and no 

manufacturing error e(t)=0.   

The static transmission error is calculated for 15 positions within a mesh cycle, and the 

approximation for the stiffness function used 7 harmonics. The following values for the 

normalized stiffness function are obtained: 

 

 
Normalized stiffness 

component Value 

 Case study 2 Heuristic optimum 

,1dk  6.039868 10-2 2.60938 10-3 

,2dk  2.549201 10-3 1.309961 10-2 

,3dk  1.017452 10-2 5.389689 10-3 

,4dk  7.716745 10-3 8.202505 10-3 

,5dk  3.415436 10-3 2.77349 10-3 

,6dk  2.19705 10-3 1.018689 10-3 

,7dk  2.686733 10-3 1.055638 10-3 

Table 47: Values of  stiffness components for case study 2 and heuristic optimum. 
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Phase Value [rad] 
 Case study 2 Heuristic optimum 

1ϕ  -0.02302711 -0.19126370 

2ϕ  -0.9228034 -0.18059620 

3ϕ  3.070796 -3.13598300 

4ϕ  -2.999429 -2.99123400 

5ϕ  -0.8892686 -0.07591713 

6ϕ  0.3613773 -1.97353900 

7ϕ  2.395425 2.46872500 

Table 48: Values of  stiffness phases for case study 2 and heuristic optimum. 
 

According to finite element results, the natural frequencies ωn, increases of 2%. 

 

 ωn [rad/s] 
Case study 2 2.870711 104 
Heuristic optimum 2.931195 104 

Table 49: Values of natural frequencies. 

 
The dynamic simulation considers the adaptive step-size Gear algorithm and the hyperbolic 

tangent smoothing backlash function with an initial position equal to 1(0) 1.0001v =  and an 

initial speed of 2 (0) 0.00001v =  for the first speed analyzed. The integration tolerance is 10-8. 

Figure 138 shows comparison of the bifurcation diagram scenario for the two cases. The PD 

bifurcation disappears completely in case of heuristic optimization. 

 
Figure 138: Comparison on bifurcation diagrams: case study 2(black); heuristic optimum 

(blue). 
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Figure 139 shows comparison of the semi-amplitude/frequency diagram. 

 
Figure 139: Comparison on semi-amplitude/frequency diagrams: case study 2(black); 

heuristic optimum (blue). 

 
The heuristic optimization yields to the following effects:  

1. Smaller amplitude of vibrations at almost all frequencies; 

2. Disappearance of the parametric resonance; 

3. Disappearance of loss of contact: the reduction of the vibration amplitude involve no 

tooth separation and the linearization of dynamics behavior at all resonances. 

4. The amplitude of vibration increases at ωm/ωn = 0.5. This is due to an increase of the 

amplitude of the second harmonic component of the STE. Figure 140 allows to 

graphically compare the contents of the harmonic components of the two cases. 
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Figure 140: Harmonics contents of the non dimensional mesh stiffness:  case study 2 (black); 

heuristic optimum (blue). 
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4.3 Genetic optimization method 
 
The basic idea of all genetic optimization techniques is to reproduce numerically the evolution 

of biological systems. The first work published on this topics is probably due to Fraser 

(1960). The scientist developed a model to study the gene epistasis phenomena through the 

evolution of a 15 bit string according to the following phenotype equation: 

 

f a,q,c( )= a + q a a + c a3

 
(4.3.1)

 

This string was intent to represent the phenotypic expression of a gene. In Fraser’s model, 5 

bit were used to represents the parameters a, q and c. An initial population was updated by 

means of a crossover process based on the strings which phenotype expression was within the 

interval [-1,1]. Fraser also defined the basic terminology used for the genetic approaches (see 

Table 50).  

 
Genetic Genetic algorithm 

Chromosome String 

Genotype: ensemble of all chromosome Structure 

Phenotype: (defined by the iteration of genes) Solution 

Fitness: numerical value associated to the phenotype 
(describes the probability of surviving of a genetic 
mutation)  

Objective function 

Gene: basic element of a chromosome  Elements of a string  

Allel: different value of gene Code (usually a binary code where each 
gene is a bit) 

Locus: position of a gene on the Chromosome 
(usually different position have the same effect).  

Locus: in genetic algorithm each gene is 
defined by its position 

Epistasis: relationship of between character and gene Multi-variables objective function 

Table 50: Genetic and genetic algorithm terminology. 

 
Subsequently Bagley applied genetic algorithms to the game theory in order to simulate 

Gardener’s game “Hexapawn” (Bagley, 1967). This simple game consists in a 3x3 chessboard 

with 3 white and 3 black pawns (see Figure 141). The game is similar to normal chess, except 

for the first time movement rule. The ultimate aim of the game is to reach the last rank of the 

board or to block any opponent movement. Since the black player can always win if the white 
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player plays first, Bagley implemented an evolutionary algorithm able to predict the correct 

black movement to win the game. 

   
Figure 141: Hexapawn chessboard. 

 
For this purpose, Bagley used a game-tree approach, which contained all functionalities of the 

modern genetic algorithm, such as:  dominance, inversion, diploid string and fitness scaling. 

The first application of genetic algorithm to large scale data analysis (data mining) were 

performed in 1970. For example Caviccio (1970) worked on pattern recognition in order to 

search object within graphic images. 

Hollstien was the first to use genetic approaches to mathematical optimization (Hollstien, 

1971). In his work 14 double variable functions are studied with a 8 bit binary code. Different 

selection and crossover strategies are analyzed and the Grey binary code is introduced in 

order to improve the efficiency of the algorithm. 

The first theory of genetic algorithm was due to Holland in 1975 with the publication of 

“Adaptation in Natural and Artificial Systems” (Holland, 1975). In the same year De Jong 

studied how to compare maximum analytical solution with the relative maximum genetic 

solution by means of convergence tests (De Jong, 1975). 

The first engineering application of genetic algorithm was completed by Goldberg in 1989 on 

the optimization of a gas pipe line and of a reticular beam structures (Goldberg, 1989). Since 

Goldberg work many other published paper were produced regarding different applications 

from fluid dynamics to civil engineering, from chemistry to languages.  

 

The only publication existing about genetic approach on spur gear optimization is by Fonseca 

et al. (2005). Despite the paper seems to be original, lack of important details do not clarify 

important assumptions and do not allow to repeat the work. 
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4.3.1 Scheme of a genetic algorithm iteration (SGA) 
A genetic algorithm is a optimization method which allows to create a new “better” family of 

solutions (usually referred as population) from an existing population by means of several 

genetic iterations. In the simplest approach (SGA) each iteration is constituted by the 

following three steps: 

1. Selection 

2. Crossover 

3. Mutation 

In order to understand if a population is better then another, the concept of fitness is also 

introduced. As in biologic system, the fitness describes the probability of surviving of a 

genetic mutation, in engineering applications, it defines the parameters according to which the 

population will “endure”. For example in a maximum problem for a mathematical function, 

the fitness will corresponds to the value of the function in a certain solution point.  

One of the key point in genetic approach is the representation of a solution by mean of binary 

code strings. For example, let consider the following function (Goldberg, 1989): 

  

( ) 2 0,1,...,31f x x x= =
 

(4.3.2)

 
In this case, the maximum is in x = 31 and 32 integer number constitute the dominium of the 

function. The dominium can be represented by means of five bits, using a positive binary 

code. 

If the population is composed by four strings, Table 51 shows a possible initial population: 

  

String number String x f(x) 
1 0 1 1 0 1 13 169 
2 1 1 0 0 0 24 576 
3 0 1 0 0 0 8 64 
4 1 0 0 1 1 19 361 
      Average 292.5 
      Maximum 576 

Table 51:  Initial population for the genetic algorithm. 

 
Selection 

The selection step allows to chose the best string from a given population. One of the simplest 

selection technique is called “stochastic sampling with replacement” and calculate the 

probability of selecting a string according to its fitness. 
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Table 52 reports fitness values and the probability of selection of each string, for the previous 

example.  

 
String 

number String x Fitness f(x) p Number of selected 
string number 

1 0 1 1 0 1 13 169 0.14 1 
2 1 1 0 0 0 24 576 0.49 2 
3 0 1 0 0 0 8 64 0.05 0 
4 1 0 0 1 1 19 361 0.31 1 
      Sum  1.00 4 
      Average 292.5   
      Maximum 576   

Table 52:  Example of stochastic sampling with replacement. 

 

The fitness f(x) corresponds to the value of equation (4.3.2) calculated for the correspondent 

string value. The probability p represents the probability to extract each single string from an 

equivalent urn in which the number of the contained strings is described in Figure 142. 

According to this probability the number of selected string described how many time the same 

string has been extracted when a new population is created. 

1 
14% 

2 
50% 

3 
5% 

4 
31% 

 
Figure 142:  Probability of extraction of each string. 

 
Table 53 shows the new population and the new values of the fitness. 
 

String number String x Fitness f(x) 
1 0 1 1 0 1 13 169 
2 1 1 0 0 0 24 576 
2 1 1 0 0 0 24 576 
4 1 0 0 1 1 19 361 
      Media 420.5 
      Max 576 
Table 53:  New population and its fitness. 
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Note that selection is the only step that involve the calculation of the fitness. In this sense it is 

the only step which tends to create a “better” population. In effect the average fitness value of 

increases from 292.5 (Table 52) to 420.5 (Table 53). 

 

Crossover 

Once a new population is generated, the strings are randomly grouped by two and, for each 

pairs of string, a cutting point is randomly selected. The cutting point can be assume a value 

from 1 to m-1 where m is the string length. The crossover operation splits each string at the 

cutting point. The first part of the father’s string and the second part of the mother’s string 

combine to form the first child string and, with a similar effect, a second child string is created 

with the remaining parts.  

   
String 

number String 
Crossing 

string 
number 

Cutting point New 
population. x Fitness f(x) 

1 0 1 1 0 1 2 4 0 1 1 0 0 12 144 
2 1 1 0 0 0 1 4 1 1 0 0 1 25 625 
3 1 1 0 0 0 4 2 1 1 0 1 1 27 729 
4 1 0 0 1 1 3 2 1 0 0 0 0 16 256 
             Average 438.5 
             Maximum 729 

Table 54: Example of crossover step. 

 
Table 54 shows the application of the crossing over step to the previous example. 

Note that a crossover probability index pc can be introduced in order to control the number of 

crossing string pairs and therefore the velocity of variation of the population. 

 

Mutation 

Just before the strings are placed into a new population, they have a slight chance of mutating. 

A mutation is simply a small, random change to one of a bit (allel) of the string. Mutation 

means flipping the bit from 1 to 0 or 0 to 1. This allows the algorithm to search in all function 

dominium. In effect if the number of the population is small or the fitness value tends to high 

an high value, the probability that a bit assumes always a constant value (1 or 0) is high 

(alleles losing phenomena).  

In Table 55, the new population does not contain the string four. Since string four is the only 

string which contains the allel 1 in position 2, an allel lost occurs. The allel value in position 2 
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would be always equal to 0, whatever selection or crossover techniques will be used in the 

following.  

 
String 

number String p 
Number of 

selected string 
number 

New 
population 

1 0 1 1 0 1 0.14 1 0 1 1 0 1 
2 1 1 0 0 0 0.50 2 1 1 0 0 0 
3 0 1 0 0 0 0.05 1 1 1 0 0 0 
4 1 0 0 1 1 0.31 0 0 1 0 0 0 

Table 55:  Alleles losing phenomena. 

 

This results in a restriction of the search dominium from 8 to 16 and from 24 to 31 (see Figure 

143).  
 

0 5 10 15 20 25 30
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1 0 0 

2 0 0 

3 0 0 

4 0 0 

5 0 0 

6 0 0 

7 0 0 

8 0 0 

9 0 0 

 
Figure 143: Reduction of the search dominium due to alleles losing phenomena. 

 

The mutation step is controlled by the mutation rate pm which determines the mutation 

probability of a single bit. 

 

Once the mutation step is ended, a new population is generated and a full genetic iteration is 

completed. 

 

4.3.2 Stochastic reminder selection without replacement 
 
Another technique used for the selection step is the “stochastic reminder selection without 

replacement” developed by Brindle in 1981 (Brindle, 1981). 

In this case the population is created by using a combined “deterministic sampling” and 

“stochastic sampling with replacement” method. Half of the population strings are selected by 
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means of the “deterministic sampling” and half of them with the “stochastic sampling with 

replacement”. 

The first technique consists in selecting a certain number of string of each type from the initial 

population according to the probability p multiplied by the dimension of the population n. If 

p•n is real, the number of the chosen string if calculated by rounding-off the p•n value to the 

smallest integer number.  The remaining strings are selected with the “stochastic sampling 

with replacement” technique but the areas of the diagram in Figure 142, are evaluated using 

the fraction part of the probability p•n. 

 Table 56 show an example of the combined selection technique. 

 
String 

number String p p•n Number of selected string 
number (determ.) Fraction Number of selected 

string number (stoc.) 
1 0 1 1 0 1 0.14 0.56 0 0.56 1 
2 1 1 0 0 0 0.50 2 2 0 0 
3 0 1 0 0 0 0.05 0.2 0 0.2 0 
4 1 0 0 1 1 0.31 1.24 1 0.24 0 
 Sum 1.00 4.00 3 1.00 1 

Table 56:  Example of stochastic reminder selection without replacement. 

 

4.3.3 Fitness scaling 

During the iteration process the value of the fitness tend progressively toward a specific value 

(the maximum in the previous example), but at the same time there is a decrease of the 

difference between the average and the maximum fitness values within the population. Each 

strings tend to have a specific fitness value and this effect reduce drastically the efficiency of 

the algorithm in advancing the “best” strings. 

Furthermore the fitness value must always have a positive (or negative) value and cannot 

oscillate within the two possibilities. 

Fitness scaling solve both problems by means of a redistribution linear law, like the one in 

following equation: 
f '= a f + b

 
(4.3.3)

 

The transformation assures that the maximum value is sufficiently distant from the average 

value. Coefficients a and b are calculated in order to have: 

⎯ The average value of the fitness unaltered; 

⎯ The probability of the stochastic sampling with replacement equal to cmult/n. (cmult 

is the number of string with maximum fitness expected in the population); 
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Since equation (4.3.3) does not assure that  f’ is always non negative (or non positive) two 

different cases can be considered: 

 

1. The application of f’ generates a positive minimum (negative maximum) value of the 

fitness; 

2. The application of f’ generates both positive and negative fitness values within the 

population. 

 

In the first case a and b can be calculated as follows:  

a =
f 1− cmult( )

f − fmax

b =
f f cmult − fmax( )

f − fmax  
(4.3.4)

where f  is the average value of f. 

In the second case a and b are calculated with the following equation: 

a f + b = f
a fmin + b = 0

⎧ 
⎨ 
⎩ 

⇒ a =
f

f − fmin

b =
f fmin

f − fmin  
(4.3.5)

The limit condition between the previous two cases is evaluated through the following 

equation: 

( ) max max' 0
1 1

mult mult
min min min min

mult mult

f f c f f cbf f a f b f f
a c c

− −
= + = ⇒ = − = ⇒ ≥

− −  
(4.3.6)

 

4.3.4 Elitism 

Elitism consists in saving the “best” string of a population by inserting it in the subsequent. 

This expedient gives advantages in case of large population by preserving good solution other 

way deleted. 

 

4.3.5 Online and offline performance 

The online and offline parameters allow to control the evolution of the population during 

iterations. De Jong (1975) defined the online performance rON as: 

( ) ( )
1

1 j

ON k
k

r j f x
j =

= ∑
 

(4.3.7)

where j is a counter for the number of the string considering all the performed iterations.  
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The online performance represents the average value of the fitness within the iterations. The 

online performance is useful for adaptive system where the aim of the analysis is to assure a 

good behavior of all solutions. Note that the following equation allows to calculate the  value 

of the online performance at string j once it is known its value for string j-1. 

rON j( )=
1
j

f xk( )
k=1

j

∑ =
j −1

j
1

j −1
f xk( )

k=1

j−1

∑
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ +

f x j( )
j

=
j −1

j
rON j −1( )+

f x j( )
j  

(4.3.8)

The offline performance is the similar to the online performance except for considering only 

the string with maximum fitness at each iteration: 

rOFF j( )=
1
j

fk
*

k=1

j

∑ dove fk
* = max f xi( ): i =1,...,k{ }( )

 
(4.3.9)

Since the offline performance results the average of the maximum fitness strings (see equation 

(4.3.9)), it is the most useful parameter to control the optimization in maximum-minimum 

problem. 

 

4.3.6 Dominium and binary code 

Since the analyzed optimization problem involve a function which depends on a certain 

number of variable nvar, it is important to define how a set of these variables are transformed 

into a string of bits. 

Let us consider a function of three variables x1, x2 e x3 defined as follow:   

( ) [ ] [ ] [ ]1 2 3, , 5,5 10, 4 1,7x x x D where D∈ = − × − ×
 

(4.3.10)

It is possible to represent the dominium D with an hyper-rectangles and discretize the 

dominium such as each point can be described by means of three integer point. Using a binary 

code and z bits, the dominium of each variables will be divided into 2z parts. At interval i each 

integer number hi will be associated a real number xi according to: 

( )

1 22 1
1

,

2 0,1,..., 2 1

i i ii i
i i iz z

i

x x xx xx x h where
h

⎧ ⎡ ⎤∈− ⎣ ⎦⎪= + ⎨
= −⎪⎩  

(4.3.11)

 

Equation (4.3.11) defines the transformation from integer into real. The next step is to convert 

the integer xi into a binary si and to join all binary numbers to create a string S. The string will 

be the binary codification of the set x1, x2 e x3.  
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{ }
var

var1 2 1 2
1

1
1

*
1 1

... ... 0,1 ;

2 * 1
i

n

n m j i
k

z i
j

i i i i
j k

S s s s a a a where a m z

h a where i z z j

=

−
−

= =

= = ∈ =

⎛ ⎞
= = + − +⎜ ⎟

⎝ ⎠

∑

∑ ∑
 

(4.3.12)

and where: 

si = a1a2...am a j ∈ 0,1{ }

hi = am− j +12
j−1

j=1

m

∑
 

(4.3.13)

In the previous example, if the binary string assumes the following expression: 
1 0 0 1 1 1 0 1 0 1 1S =

 
(4.3.14)

the second variable will be: 

( )

0 1 2
2

2 3

1 2 0 2 1 2 5
4 10

10 5 1.25
2

h

x

= ⋅ + ⋅ + ⋅ =

− −
= − + = −  

(4.3.15)

For what concerns the position order of the variables into the string S, it is important to 

evaluate the degree of correlation between the variables. For example the correlation between 

variable x1 and variable x2 can be calculated by deriving the objective function f with respect 

to both variables: 

( )

( ) ( )

var

var

var var

2

1
2 1

2

1 1
1

,..., 0 indipendent variables

,..., ,..., 0 ,

n

n

n k k n
k i j

f x x
x x

ff x x c x x x i j
x x

∂
∂ ∂

∂
∂ ∂=

= ⇒

= ⇒ = ∀∑  
(4.3.16)

If the derivative is equal to zero then the two variables are not correlated. (note that f must be 

of C1 class). Inorder to assure string variation within the dominium, the string must be built 

such as not correlated variable are close one each other. 

 

4.3.7 Grey binary code 

In order to give an exhaustive overview of genetic approaches it is important to remind that in 

the common binary codification, two subsequent integer number can differ for a high number 

of bit. For example 63 and 64 have 7 different bits when a 7 bits binary code is used. 
0111111 → 63
1000000 → 64

 
(4.3.17)
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This condition provides very different code for similar values and does not maintains bad 

conditioned values close one each other. The use of the Grey binary code can avoid this 

problem. 

{ }
var

var1 2 1 2
1

11
1

*11 1

... ... 0,1 ;

2 *
i i

n

n m j i
k

z iz j
j

i i ikj k

S s s s a a a where a m z

h a where i z k

=

−− −
−

== =

= = ∈ =

⎛ ⎞⎛ ⎞= ⊕ = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑

∑ ∑  
(4.3.18)

Equation (4.3.18) define the new binary codification where the operator ⊕  is defined as 

follow: 

{ } 1 2
1 2 1 2

1 2

0
, 0,1 ,

1
if a a

a a a a
if a a

=⎧
∈ ⊕ = ⎨ ≠⎩  

(4.3.19)

The operator ⊕  is equivalent to a XOR (exclusive OR) operator: 

 
a1 a2 c 
0 0 0 
1 0 1 
0 1 1 
1 1 0 

Table 57: Truth table for XOR operator. 

 
Using Grey code the first 8 integer number can be defined as follows: 
 

0 1 2 3 4 5 6 7 
000 001 011 010 110 111 101 100 

Table 58: First 8 number with Grey binary code. 

 

4.3.8 Validation of the genetic approach 
 

In order to validate the genetic approach a simple validation procedure has been tested on a 

maximum-minimum analytical problem. 

Let us consider the following function: 

f x,y( )= sin x( )cos(y) x ∈ −5,5[ ] y ∈ −5,5[ ]
 

(4.3.20)

 

If the gradient of the function is equalized to zero, the following maximum values can be 

calculated within the dominium [ ] [ ]5,5 5,5x y∈ − ∈ − . 

 

−
π
2

,−π
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ −

π
2

,π
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ −

3
2

π,0
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

π
2

,0
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

3
2

π,−π
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

3
2

π,π
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
 

(4.3.21)
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Figure 144: Plots of function f. 

 

The described function can be modulated by means of the following equation: 

g x( )= − x +
π
2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

+
π +10( )2

4  
(4.3.22)

Function g(x) is a parabola with a maximum in [-π/2 ; -π] and always positive within the 

dominium of  f(x,y). The modulated function has the following expression: 

˜ f x,y( )= − x +
π
2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

+
π +10( )2

4

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

− y + π( )2 + π + 5( )2[ ]sin x( )cos y( )
 

(4.3.23)

( ),f x y  is always positive, has multiple relative maximum and one absolute maximum within 

the specified dominium; for its properties this function is a suitable function for testing a 

genetic approach able to find the absolute maximum within the dominium. 

Figure 145 shows a plot of the function ˜ f : 
 

 
Figure 145:  Plots of function ˜ f . 
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The absolute maximum corresponds to: 

 

( ), , 2861.90195054543
2

f x y f π π⎛ ⎞= − − =⎜ ⎟
⎝ ⎠  

(4.3.24)

 
 
 
Four different genetic algorithms are tested on equation (4.3.23) and the behavior of each is 

discussed based on online and offline performance. Note that in this case, the fitness 

corresponds to the value of ˜ f  for a given string. The following chart lists the characteristic of 

each algorithm (details on random selection algorithm are provided in the following): 

Simulation parameters caso1 caso2 caso3 caso4 

Number of bits in the string m 32 (16x2) 32 (16x2) 32 (16x2) 32 (16x2) 

Number of strings in the population n 200 200 200 200 

Crossover probability pc 0.6 0.6 0.6 0.6 

Mutation rate pm 0.033 0.033 0.033 0.033 

Multiplier for the fitness scaling cmult 1.5 1.5 1.5 1.5 

Number of iteration niter 200 200 200 200 

Type of  genetic algorithm 

Stochastic 
sampling 

with 
replacement 

Stochastic 
reminder 
selection 
without 

replacemement 

Stochastic 
reminder 
selection 
without 

replacemement 

Random 
selection 

 

Binary code Classic Classic Grey - 

Elitism Yes Yes Yes Yes 

Table 59: Details of the developed genetic algorithms. 

 

 

 

A first analysis is conducted between caso1 and caso2, in order to compare the SGA 

“stochastic sampling with replacement” and the “stochastic reminder selection without 

replacemement” approaches. 
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Figure 146: Comparison between caso1 and caso2: caso1 online performance (red); caso1 

offline performance (blue); caso2 online performance (green); caso2 offline performance 

(magenta). 

 

The offline performance shows that the “stochastic reminder selection without 

replacemement” converges to the maximum value, faster then the SGA. Same results are 

obtained considering the online performance even if the SGA technique performs better in the 

first 30 iterations. This comparison results in the choise of the “stochastic reminder selection 

without replacemement” method for the further analysis. 

 
Figure 147: Comparison between caso2 and caso3: caso2 online performance (red); caso2 

offline performance (blue); caso3 online performance (green); caso3 offline performance 

(magenta). 
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A second test is carried out to analys the effect of the Grey binary code with respect to the 

classical binary representation. For this reason a similar simulation is performed for caso2 and 

caso3. 

Figure 147 shows that the Grey codification approach does not improve the performances of 

the genetic algorithm in the case of tested maximum-minimum problem. A probable reason 

could be related to the  analysis parameters listed in Table 59; the values of  pc, pm and cmult 

has been chosen according to literature (De Jong, 1975) for a SGA applications. For example 

it is possible that using an higher mutation ratio can results in a better performance of the 

Grey code. Indeed the application of the standard binary code is less deterministic, a small 

change in a bit can cause a large movement within the dominium. 

For the present application the standard binary code wil be use in the following application. 

Since caso2 have better performance, a plot of the maximum fitness with respect to the 

iterations are presented for this case: 

 
Figure 148: Maximum fitness versus iterations for the caso2. 

 
After 50 iterations the fitness maximum converge to the following value: 
 

Case Analitycal Caso2 Difference 

Maximu value 2861.90195054543 2861.90163863698 -1.0899 10-7 

Table 60: Coparison of the maximum for function ˜ f . 

 

Note that the machine precision is of the order 10-16. 

The result of Table 58 can be appear not sufficiently accurate. Indeed a complete comparison 

must also takes into account the discretization of the dominium.  
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Equation (4.3.25) shows the calculation of discretization step used for both x and y variables:  

( ) 4-
16

12

101.5294
2

55
2

⋅=
−−

=
−

=Δ=Δ zyx
xx

 
(4.3.25)

 

The coordinates of the maximum point calculated by means of the case2 approach are: 

(-1.57068741893645, -3.14114595254444)
 

(4.3.26)

 

It is possible to compare these values with the relative analytic value (see equation (4.3.24)); 

the differences are : 
-4 -4(1.089 10 , 4.467 10 ) 

 
(4.3.27)

 

Which have the same order of the discretization step. For this reason previous results must be 

considered accurated. 

 

A final test is carried out to check the performance of the genetic approach with respect to a 

purely random technique. 

Performing niter iterations with a population of n strings the number of  total strings created by 

the SGA alghorithm is n*: 

 

( )1* −= nnn iter

 
(4.3.28)

 

Note that equation (4.3.28) takes into account the elitism step which save the best string at 

each iteration.  

The purely random technique will randomly create n* strings within the dominium and will 

store the maximum obtained value. Note that each string will have a randomly selection 

procedure for each bit. 

 

The coordinates of the maximum point calculated by means of the caso4 approach are: 

(-1.5131609063859, -3.17364766918441)   (4.3.29)

The differences with respect to the analytical solution are much higher then those obtained for 

caso2: 

(0.0576, -0.0321)   (4.3.30)
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Figure 149: Comparison between caso2 and caso4: caso4 online performance (red); caso4 

offline performance (blue); caso2 online performance (green); caso2 offline performance 

(magenta). 

 

Figure 149 shows the performance comparison between the two cases. The online 

performance behavior clearly shows how the genetic algorithm is able to recognized the 

dominium area where the best results are located. For what concern the offline behavior the 

two results seems to be similar. This is due mainly to the fact that function ˜ f  depends only by 

two varables. 

 

4.3.9 Implemented SGA genetic algorithm  
 

In this work a general purpose optimization procedure has been developed based on a SGA 

genetic algorithm with elitism. The flux diagram of the algorithm can be described as follows: 

 

1. Generation of a random initial population; 

2. Calculation of the fitness of each population string; 

3. Extraction of the a new population according to fitness 

4. Random grouping of population strings; 

5. Random cutting and crossing between strings; 

6. Application of the bit mutation according to pm probability. 

7. Calculation of the new strings fitness and location of the maximum and minimum 

fitness within the population; 
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8. Substitution of the worst string of the new population with the best string of the 

previous population if the first string has worst fitness then the second one;   

9. Repetition of step 3-8 for an arbitrary number of iterations. 

All steps has been implemented into a Matlab®  code according to the scheme described in 

Figure 150. 

 
Figure 150:  Scheme of the implemented SGA algorithm. 

 

The scheme illustrates the relationships between the previous flux diagram and the 

hierarchical structure of the Matlab® application. 

script_iniziale 

“script_iniziale” is the main script of the code. All the parameters of the algorithm and the 

dominium of the objective function are defined inside this script.  

 
Parameter Meaning 
n Number of string in the population 
pc Crossover probability 
pm Mutation rate 
cmult Multiplier for the fitness scaling 
nvar Number of independent variable of the objective function 
Limits Contains dominium and the binary code information  

(number of bit to represent the variable) of each variables 
niter Number of iteration to be done 

Table 61: Parameters defined in script_iniziale. 
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Note that from these values it is possible to calculate the string length m and that the number 

of string within the population must be even to allow a proper crossover. 

 

statistiche 

This function calculate the string fitness for a given population. “statistiche” creates three 

matrix with the following content: 

⎯ R: contains the properties of the population fitness such as maximum, minimum and 

average fitness values, the online and offline performance and the lost alleles (see 

Table 62) . 

⎯ P: contains the iteration parameters such (see Table 62). In this way it is possible to 

change some of the parameters after a certain number of iteration. For example after 

100 iteration it is possible to replace the last 30 by running 80 new iterations with 

different value of the mutation probability. This possibility is useful when the 

algorithm restricts the search dominium. 

⎯ It: contains progressive number which allows to record the number of performed 

iterations.      

 
Column 1 2 3 4 5 
Content m n pc pm cmult 

Table 62: Content of a row of matrix P. 

 
Column 1 2 3 3 4 5 

Descrizione Average 
fitness 

Minimum 
fitness 

Maximum 
fitness 

Online 
performance 

Offline 
performance 

Lost 
alleles 

Table 63: Content of a row of matrix R. 

 
All lost alleles are detected by checking each bit within the strings of the population 
 
fitness 

This script contains the definition of the objective function and therefore calculate the fitness 

for a given string. 

fitness_scala 

This script executes the scaling process according to equations (4.3.4) or (4.3.5). 

decodifica 

This script creates string according to equations (4.3.12) and (4.3.13) or according to Grey 

code. 
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selezione 

This script generates a new population according to the “stochastic sampling with 

replacement” technique.  

incrocio 

This script executes the crossing over process. 

mutazione  

This script executes the crossing over process. 

elitism  

This script executes the elitism process. 

 

4.3.10 Application of the genetic alghorithm to spur gears pair 
 
In this section some applications of the genetic algorithm are proposed for case study 2. 

The used approach is based on a binary codification (classic binary code) of the 10 parameters 

which control the set of profile modifications on both pinion and gear profiles. Note that all 

reliefs are considered linear.  

The extension of the dominium of each variable is described in Table 64: 

 
Parameter From To 

ϕt,s Pitch point Tip circle 

magt 0 40 μm 

ϕr,s Pitch point SAP 

magr 0 40 μm 

Table 64: Dominium of variable parameters for the genetic optimization. 

 

Each dominium is discretized according to Table 65: 

Parameter 
Number of 

points  

Number of 

bits 

ϕt,s 2048 11 

magt 64 6 

ϕr,s 2048 11 

magr 64 6 

Table 65: Discretization of profile modification variable. 

 
The discretization of Table 65 allows to obtain at least a discretization step of 1 μm on the 

magnitude and  step 1 μm on the roll angle radius (see equation (1.2.6)). 
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The string has a number of bit equal to the sum The previous table show the number of bit 

required for the representation of each variable dominium.  

The string used for the genetic algorithm, has 68 bits since this number is equal to the total 

number of bits (m) used to represent the variables. 

Figure 151 shows the graphical representation of the string. According to theory the order of 

the variables within the string maintains close the not correlated variables to assure variation 

within the dominium. 

 
Figure 151: Codification of the profile modification in a string. 

 

Once the string is composed, a calculation of the STE is performed according to previous 

sections. The number of sample in a mesh cycle is set to 15 and the analytical reconstruction 

is based on 7 harmonics components. 

Four different simulations are performed; each case has a different objective function or a 

different number of iterations according to Table 66: 

 
Case study Objective function Number of iterations 

Case D Minimum peak to peak of STE 100 

Case E Minimize the average of the first 3 harmonic 
components of STE 100 

Case G1000 Minimize the average of the first 7 harmonic 
components of STE 1000 

Case H1000 Minimize the maximum of the first 7 harmonic 
components of STE 1000 

Table 66: Case studies for the genetic otimization approach. 

The same simulation parameters are used for all cases (see Table 67): 

Number of bits in the string m 68 

Number of strings in the population n 50 

Crossover probability pc 0.6 

Mutation rate pm 0.033 

Multiplier for the fitness scaling cmult 1.5 

Table 67: Simulation parameters. 
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Values for pc, pm and cmult are taken from literature (De Jong, 1975). 

The simulations provides the following results in terms of profile modifications parameters: 

  Case D Case E 

  Pinion Gear Pinion Gear 
 Tip relief     
 typet Linear Linear Linear Linear 
 ϕt,s [Deg] 31.627 30.625 31.619 30.193 
 magt [mm] 0.026032 0.020952 0.019048 0.015238 
     
 Root relief     
 typer Linear Linear Linear Linear 
 ϕr,s [Deg] 23.035 24.098 24.203 25.056 
 ϕt,e [Deg] 14.433 20.576 14.433 20.576 
 Tip relief 0.0057143 0.0025397 0.011429 0.0063492 

Table 68: Resulting profile modifications according to simulations: case D and case E. 

 

 Case G1000 Case H1000 

 Pinion Gear Pinion Gear 
Tip relief     

typet Linear Linear Linear Linear 
ϕt,s [Deg] 31.753 30.141 31.472 30.328 
magt [mm] 0.015238 0.019048 0.026667 0.019682 

     
Root relief     

typer Linear Linear Linear Linear 
ϕr,s [Deg] 23.187 24.605 21.331 26.564 
ϕt,e [Deg] 14.433 20.576 14.433 20.576 

magr  [mm] 0.010159 0.014603 0.012064 0 
Table 69: Resulting profile modifications according to simulations: case G1000 and case 

H1000. 
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4.3.11  Results and comparisons 
 
In this section comparison between genetic optima and the heuristic optimum is provided by 

means of comparison of semi-amplitude/frequency diagrams. All dynamics simulations 

considers the adaptive step-size Gear algorithm and the hyperbolic tangent smoothing 

backlash function with an initial position equal to 1(0) 1.0001v =  and an initial speed of 

2 (0) 0.00001v =  for the first speed analyzed. The integration tolerance is 10-8. The applied 

torque is 470 Nm, the damping ζ = 0.01 and no manufacturing error e(t)=0 are included.    

The static transmission error is calculated for 15 positions within a mesh cycle, and the 

approximation for the stiffness function used 7 harmonics. 

The following tables shows the harmonic content of the mesh stiffness used for the dynamic 

simulations: 

 
Normalized 

stiffness 
component 

Value 

 Case D Case E Case G1000 Case H1000 Case Hp 

,1dk  3.752193 10-3 1.028101 10-3 2.975343 10-3 8.829487 10-3 8.828812 10-3

,2dk  1.194203 10-2 9.635169 10-3 9.064506 10-3 8.724595 10-3 8.724466 10-3

,3dk  5.856541 10-3 1.919085 10-3 5.117514 10-4 3.613242 10-3 3.612043 10-3

,4dk  6.665899 10-3 1.244864 10-2 1.005772 10-2 7.262569 10-3 7.263183 10-3

,5dk  4.625099 10-3 2.393211 10-3 1.633575 10-3 3.367069 10-3 3.367713 10-3

,6dk  1.668823 10-3 3.82011 10-3 1.491529 10-3 5.715802 10-4 5.70438 10-4 

,7dk  1.606652 10-3 3.144733 10-3 1.702096 10-3 2.321127 10-3 2.322295 10-3

Table 70: Normalized mesh stiffness components used for the dynamic simulations. 
 

Phase [rad] Value 
 Case D Case E Case G1000 Case H1000 Case Hp 

1ϕ  -0.2241531 0.1062465 -0.9378188 -0.04870337 -0.04858557 

2ϕ  -0.1787807 -0.3990678 -0.07907809 -0.4234867 -0.4236278 

3ϕ  -2.961203 0.6414558 3.122596 2.887299 2.887213 

4ϕ  2.867716 -3.064962 -2.978783 -3.14147 3.141568 

5ϕ  -1.144825 -0.8636339 -0.4594357 -1.073386 -1.073699 

6ϕ  2.468738 0.0707361 -0.1633323 2.747065 2.746232 

7ϕ  1.59394 2.885404 2.729787 1.760166 1.760341 

Table 71: Harmonic phases of normalized mesh stiffness  used for the dynamic simulations. 
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COMPARISON 1 

Figure 152 shows a semi-amplitude/frequency comparison between heuristic optimum, 

obtained in the previous sections,  case D and case E. 

 
Figure 152: Comparison of semi-amplitude/frequency diagram: heuristic optimum (black); 

genetic optimization case D (blue); genetic optimization case E (red). 

 
Figure 153 shows the harmonic content of the STE for the heuristic optimum, case D and case 

E. 
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Figure 153: Harmonic content of the STE: heuristic optimum (black); genetic optimization 

case D (blue); genetic optimization case E (red) 
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Table 72 shows peak to peak values of the mesh stiffness and of the STE for the heuristic 

optimum, for case D and for case E. 

 

 Heuristic 
optimum 

Case D Case E 

 Stiffness pk to pk [N/m] 1.12055 107 1.15468 E 107 1.45774 107 
 STE pk to pk [μm] 1.70299 1.73964 2.19356 
Table 72: Peak to peak values of the mesh stiffness and STE. 

 

The previous diagrams and Table 72  yield to the following considerations: 

1. No solution shows parametric resonances; 

2. No solution shows non linear effects such as contact loosing or softening behaviors; 

3. Despite case D and E has higher peak to peak values, the response at almost all 

frequencies, is very similar to the one given by the heuristic optimum 

4. Case E appears to have the best behaviour at high frequency and the worst at low 

frequencies. This is the effect of the harmonic content of the STE. Indeed Figure 153 

shows that, case E has larger harmonic content for the higher harmonics, which are 

the excitation source for the super harmonic resonances at low frequencies. 

5. Despite case D has not the highest value of the STE peak to peak, it has the higher 

primary resonance. This is due to the contribution of the first harmonic component. 

 

The previous results clarify that a genetic optimization of the STE, in term of peak to peak 

value (case D), does not give the best results. When the objective function involve a 

minimization of the average of the first 3 harmonic components (case E) better results are 

obtained. 

  

 

COMPARISON 2 

The previous analysis prove that the harmonic content must be controlled as well as the peak 

to peak value. A second comparison is carried out by considering an objective function which 

minimize the average value of all the seven harmonic component (case G). Furthermore the 

number of iteration has been increased to 1000. 
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Figure 154: Comparison of semi-amplitude/frequency diagram: heuristic optimum (black); 

genetic optimization case E (blue); genetic optimization case G1000 (red). 
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Figure 155: Harmonic content of the STE: heuristic optimum (black); genetic optimization 

case E (blue); genetic optimization case G1000 (red). 

 

Figure 154 and Figure 155 show respectively the semi-amplitude/frequency diagram and the 

harmonic content of the STE for the heuristic optimum, case D and case E. 
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In this simulation case G1000 has an excellent behavior at almost all frequencies, except for 

the primary and the fourth super harmonic resonances. Table 73 explains, once again, that the 

minimization of the peak to peak value of the STE does not involve necessarily a lower 

amplitude of the primary harmonic.  

 

 Heuristic 
optimum 

Case E Case G1000 

 Stiffness pk to pk [N/m] 1.12055 107 1.45774 107 1.10304 107 
 STE pk to pk [μm] 1.70299 2.19356 1.67044 
Table 73: Peak to peak values of the mesh stiffness and STE. 

 

 

COMPARISON 3 

The last comparison considers case G1000 and case H1000. In case G1000, the average of the 

7 harmonic components of the STE is minimized, in case H1000 the maximum harmonic 

component (within the all 7 harmonics) is minimized. Results are compared with the heuristic 

optimum. The same number of iteration are considered between the two genetic cases. 

 
Figure 156: Comparison of semi-amplitude/frequency diagram: heuristic optimum (black); 

genetic optimization case G1000 (blue); genetic optimization case H1000 (red). 
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Figure 157: Harmonic content of the STE: heuristic optimum (black); genetic optimization 

case G1000 (blue); genetic optimization case H1000 (red). 

 

 Heuristic 
optimum 

Case G1000 Case H1000 

 Stiffness pk to pk [N/m] 1.12055 107 1.10304 107 1.20327 107 
 STE pk to pk [μm] 1.70299 1.67044 1.81662 
Table 74: Peak to peak values of the mesh stiffness and STE. 

 
Dynamic simulations shows that the best results are obtained for case G1000, which minimize 

the average values of the seven harmonics. 

 

Despite the implemented genetic algorithms provide better results with respect to heuristic 

approaches, all previous comparison predict that it is very difficult to minimize all harmonic 

content. Indeed even if the vibration level decrease for a wide range of frequencies, there is 

always at least one component which cannot be reduce. 

For this reason improvements in the definition of the objective function must be carried out. A 

starting point, for future work, can be the idea of minimizing the harmonic content of the STE 

by means of weight averages. This will allows to concentrate the efforts of the algorithm at 

those particular frequencies that can be dangerous for the system stability.  
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Conclusion 
 
 
In the present work the static and dynamic behavior of spur gears systems has been studied.  

In Chapter 1 basic fundamentals of spur gear geometry has been provided focusing on macro 

geometry and mounting parameters. Particular attention has been paid to the description of the 

tooth profile by means of the theory of meshing. The given formulation is suitable for a 

industrial application, where gears profiles are defined through the manufacturing process and 

the cutting tool geometry. 

In Chapter 2 an original gear “mesh” generator is described for a pair of spur gears. Routines 

for the discretization of the involute profile, throcoidal fillet and rim sectors, are presented 

with some examples. The developed procedure provides an automatic tool  capable to 

generate a FE model of a spur gear pair for an arbitrary number of relative positions of the 

two wheels. Calculation of the STE for a given number of meshing position within a mesh 

cycle, are used to test the method. Comparisons with commercial codes show excellent 

agreement. In the second part of the chapter a unique modeling technique for analyzing 

complex gears systems, such as multi mesh systems, is described. The presented model take 

advantage of a new combined semi-analytical FEM solutor Calyx®, which allows to perform 

static analysis of large gears system with great accuracy. Details of the modeling procedure 

are provided by means of a compound planetary system example, including bearings effects. 

Results show the possibility of studying stresses behavior and bearing displacements and 

reactions during system rotation. 

Chapter 3 focuses on the dynamic of a spur gears pair. A single degree of freedom, dynamic 

model is illustrated which is able to include backlash, damping, variable mesh stiffness and 

back-side contact effects. Validations of the model are provided by means of comparison with 

literature and experimental test. Some case studies show the effect of design parameters, such 

as profile modifications and manufacturing errors. Instability regions and chaotic behavior are 

also analyzed. 

Chapter 4 is completely dedicated to spur gear optimization. Since micro geometry affects the 

dynamics of gears systems, the main idea is to design a correct set of profile modifications 

capable to reduce gears vibrations. Two optimization approaches are formulated: the first is 

based on a heuristic technique, the second one on genetic algorithms. Applications of the two 

methodologies to actual spur gears pairs and dynamic simulations show how gears vibration 
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can be reduced. Furthermore advantages and disadvantages of the two approaches are also 

underlined. 
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